Advertisement

Structural, optical and magnetic properties of nanophase NiWO4 for potential applications

  • Hitha Harshan
  • Karathan Parakkandi Priyanka
  • Aikkara Sreedevi
  • Anjali Jose
  • Thomas VargheseEmail author
Regular Article

Abstract

Nanocrystalline NiWO4 powder samples were synthesized by direct-chemical precipitation method. Thermal stability of the sample was studied by thermo gravimetric and differential thermal analysis. Structural characterization of NiWO4 nanoparticles was done with X-ray diffraction and field emission scanning electron microscopy. Elemental analysis of the samples were done with energy dispersive X-ray spectroscopy. Vibration modes of as prepared samples were analysed using Fourier transform infrared spectroscopy and Raman spectroscopy. Optical properties of the samples were explored using UV-vis spectroscopy and photoluminescence (PL) spectroscopy. Magnetic properties of NiWO4 nanoparticles were analysed using vibrating sample magnetometer (VSM). Effect of calcination temperature on structural, vibrational, optical and magnetic properties of the NiWO4 samples were also investigated. The results obtained from various characterization techniques found that NiWO4 nanoparticle have the potential use in light emitting diodes (LEDs), biomedical and sensing applications.

Keywords

Mesoscopic and Nanoscale Systems 

References

  1. 1.
    H. Wang, F.D. Medina, Y.D. Zhou, Q.N. Zhang, Phys. Rev. B 45, 10356 (1992) CrossRefGoogle Scholar
  2. 2.
    J.M. Quintana-Melgoza, A. Gomez-Cortes, M. Avalos-Borja, React. Kinet. Catal. Lett. 76, 131 (2002) CrossRefGoogle Scholar
  3. 3.
    B. Scheffer, P. Molhoek, J.A. Moulijn, Appl. Catal. 46, 11 (1989) CrossRefGoogle Scholar
  4. 4.
    D.L. Stern, R.K. Grasselli, J. Catal. 167, 570 (1997) CrossRefGoogle Scholar
  5. 5.
    R. Sundaram, K.S. Nagaraja, Mater. Res. Bull. 39, 581 (2004) CrossRefGoogle Scholar
  6. 6.
    R.C. Pullar, S. Farrah, N. McN Alford, J. Eur. Ceram. Soc. 27, 1059n (2007) CrossRefGoogle Scholar
  7. 7.
    P.S. Pandey, N.S. Bhave, R.B. Kharat, Electrochim. Acta 51, 4659 (2006) CrossRefGoogle Scholar
  8. 8.
    W. Carel, E. van Eijk, Phys. Res. A 392, 285 (1997) Google Scholar
  9. 9.
    L.F. Johnson, G.D. Boyd, K. Nassau, R.R. Soden, Phys. Rev. 126, 1406 (1962) CrossRefGoogle Scholar
  10. 10.
    J.M. Quintana-Melgoza, J. Cruz-Reyes, M. Avalos-Borja, Mater. Lett. 47, 314 (2001) CrossRefGoogle Scholar
  11. 11.
    A.L.M. de Oliveira, M.R.S. Silva, S.C. de Souza, F.T.G. Vieira, E. Longo, A.G. Souza, M.G.S. Leda, J. Therm. Anal. Calorim. 97, 167 (2009) CrossRefGoogle Scholar
  12. 12.
    J.H. Ryu, J.W. Yoon, C.S. Lim, K.B. Shim, Key Eng. Mater. 317, 223 (2006) CrossRefGoogle Scholar
  13. 13.
    A. Dias, V.S.T. Ciminelli, J. Eur. Ceram. Soc. 21, 2739 (2001) CrossRefGoogle Scholar
  14. 14.
    Z. Song, J. Ma, H. Sun, W. Wang, Y. Sun, L. Sun, Z. Liu, C. Gao, Ceram. Int. 35, 2675 (2009) CrossRefGoogle Scholar
  15. 15.
    T. Dong, Z. Li, Z. Ding, L. Wu, X. Wang, X. Fu, Mater. Res. Bull. 43, 1694 (2008) CrossRefGoogle Scholar
  16. 16.
    J. Ruiz-Fertes, S. Lopez-Moreno, A. Segura, P. Rodrigues-Hernandez, A. Munoz, A.H. Romeo, J. Gonzales, J. Appl. Phys. 107, 083506 (2010) CrossRefGoogle Scholar
  17. 17.
    A.R. West, Solid State Chemistry and Its Applications (Wiley, New Delhi, 2007) Google Scholar
  18. 18.
    B.D. Cullity, Elements of X-Ray Diffraction (Addison-Wesley, MA, 1967) Google Scholar
  19. 19.
    G.K. Williamson, W.H. Hall, Acta Metall. 1, 22 (1956) CrossRefGoogle Scholar
  20. 20.
    G.M. Fernandez, A. Martinez-Arias, J.C. Hanson, J.A. Rodriguez, J. Chem. Rev. 104, 4063 (2004) CrossRefGoogle Scholar
  21. 21.
    R. Di Monte, J. Kaspar, J. Catal. Today 100, 27 (2005) CrossRefGoogle Scholar
  22. 22.
    M. Mancheva, R. Iordanova, Y. Dimitriev, J. Alloys Compd. 509, 15 (2011) CrossRefGoogle Scholar
  23. 23.
    M.N. Mancheva, R.S. Iordanova, D.G. Klissurski, G.T. Tyuliev, B.N. Kunev, J. Phys. Chem. C 111, 1101 (2007) CrossRefGoogle Scholar
  24. 24.
    M. Daturi, G. Busca, M.M. Borel, A. Leclaire, P. Piaggio, J. Phys. Chem. B 101, 4358 (1997) CrossRefGoogle Scholar
  25. 25.
    V.V. Fomichev, O.I. Kondratov, Spectrochem. Acta A 50, 1113 (1994) CrossRefGoogle Scholar
  26. 26.
    M. Maczka, J. Kanuza, S. Kojima, J.H. vander Maas, J. Solid State Chem. 158, 334 (2001) CrossRefGoogle Scholar
  27. 27.
    J. Hanuza, L. Macalik, Spectrochem. Acta A 43, 361 (1987) CrossRefGoogle Scholar
  28. 28.
    A. Kuzmin, A. Kalinko, R.A. Evarestov, Cent. Eur. J. Phys. 9, 502 (2011) Google Scholar
  29. 29.
    D.L. Rousseau, R.P. Bauman, S.P.S. Porto, J. Raman Spectrosc. 10, 253 (1981) CrossRefGoogle Scholar
  30. 30.
    F.D. Hard Castle, I.E. Wachs, J. Raman Spectrosc. 26, 397 (1995) CrossRefGoogle Scholar
  31. 31.
    N.V. Minh, N.M. Hung, Mater. Sci. Appl. 2, 957 (2011) Google Scholar
  32. 32.
    W. Tong, L. Li, W. Hu, T. Yan, X. Guan, G. Li, J. Phys. Chem. C 114, 15298 (2010) CrossRefGoogle Scholar
  33. 33.
    A. Sreedevi, K.P. Priyanka, K.K. Babitha, N. Aloysius Sabu, T.S. Anu, T. Varghese, Indian J. Phys. 89, 889 (2015) CrossRefGoogle Scholar
  34. 34.
    A.H. Morshed, M.E. Moussa, S.M. Bedair, R. Leonard, S.X. Liu, N.E. Masry, Appl. Phys. Lett. 70, 1647 (1997) CrossRefGoogle Scholar
  35. 35.
    F. Marabelli, P. Wachter, Phys. Rev. B 36, 1238 (1987) CrossRefGoogle Scholar
  36. 36.
    P. Prashant Kumar, N.S. Bhave, R.B. Kharat, Electrochim. Acta 51, 4659 (2006) CrossRefGoogle Scholar
  37. 37.
    E.I. Ross-Medgaarden, I.E. Wachs, J. Phys. Chem. C 111, 15089 (2007) CrossRefGoogle Scholar
  38. 38.
    V.G. Tiziano Montini, H. Abdul, F. Laura, A. Gianpiero, F. Paolo, Chem. Phys. Lett. 498, 115 (2010) Google Scholar
  39. 39.
    L.S. Cavalcante, M.A.P. Almeida, W. Avansi, R.L. Tranquilin, E. Longo, N.C. Batista, V.R. Mastelaro, M.S. Li, Inorg. Chem. 51, 10675 (2012) CrossRefGoogle Scholar
  40. 40.
    D.V. Bavykin, S.N. Gordeev, A.V. Morkalenko, A.A. Lapkin, F.C. Walsh, J. Phys. Chem. B 109, 8565 (2005) CrossRefGoogle Scholar
  41. 41.
    A. Kalinko, A. Kotlov, A. Kuzmin, V. Pankratov, I. Anaroli, A.I. Poppov, L. Shirmane, Cent. Eur. J. Phys. 9, 432 (2011) Google Scholar
  42. 42.
    A.L.M. De Oliveira, Dyes Pigm. 77, 210 (2008) CrossRefGoogle Scholar
  43. 43.
    A. Kuzmin, J. Purans, Radiat. Meas. 33, 583 (2001) CrossRefGoogle Scholar
  44. 44.
    V.M. Longo, L.S. Cavalcante, E.C. Paris, J.C. Sczancoski, P.S. Pizani, M.S. Li, J. Andres, E. Longo, J.A. Varela, J. Phys. Chem. C 115, 5207 (2011) CrossRefGoogle Scholar
  45. 45.
    M.A. Santos, E. Orhan, M.A.M.A. de Maurera, L.G.P. Simoes, A.G. Souza, P.S. Pizani, E.R. Leite, J.A. Varela, J. Andres, A. Beltran, E. Longo, Phys. Rev. B 75, 165105 (2007) CrossRefGoogle Scholar
  46. 46.
    M. Grigorova, H.J. Blythe, V. Blaskov, V. Rusanov, V. Petkov, V. Masheva, D. Nihtianova, L.M. Martinez, J.S. Munoz, M. Mikov, J. Magn. Magn. Mater. 183, 163 (1998) CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Hitha Harshan
    • 1
    • 2
  • Karathan Parakkandi Priyanka
    • 1
  • Aikkara Sreedevi
    • 3
  • Anjali Jose
    • 4
  • Thomas Varghese
    • 1
    Email author
  1. 1.Nanoscience Research Centre (NSRC), Department of Physics, Nirmala CollegeMuvattupuzhaIndia
  2. 2.Department of PhysicsNewman CollegeThodupuzhaIndia
  3. 3.Department of Applied Science and HumanitiesThejus Engineering CollegeThrissurIndia
  4. 4.Department of PhysicsVimala CollegeThrissurIndia

Personalised recommendations