Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Emergence of novel phenomena on the border of low dimensional spin and charge order

Abstract

Proximity to magnetic order as well as low dimensionality are both beneficial to superconductivity at elevated temperatures. Materials on the border of magnetism display a wide range of novel and potentially useful phenomena: high Tcs, heavy fermions, coexistence of magnetism and superconductivity and giant magnetoresistance. Low dimensionality is linked to enhanced fluctuations and, in the case of heavy fermions, has been experimentally shown to be beneficial for the fluctuations that are responsible for the rich abundance of novel emergent phases. This experimental strategy motivated us to explore 2D insulating magnets with a view to investigate phase evolution across metal-insulator and magnetic-non-magnetic boundaries. This has been a fruitful venture with totally novel results different to our expectations. We present results from 2 distinct systems. The MPS3 family are highly anisotropic in both their crystal and magnetic structures. FePS3 in particular is a model insulating honeycomb antiferromagnet. We find that the application of pressure to FePS3 induces an insulator to metal transition. The second system, Cs2CuCl4, is a highly-frustrated quantum spin liquid at low temperature. The competition of the 3 relevant exchange couplings is delicately balanced. It has been shown to become antiferromagnetic at very low temperatures (~1 K). We have found that the application of pressure for 3 days or more followed by a return to ambient pressure stabilises a totally distinct magnetic ground state.

Change history

  • 04 October 2018

    First author?s name is corrected to Charles R.S. Haines.

  • 04 October 2018

    First author���s name is corrected to Charles R.S. Haines.

  • 04 October 2018

    First author���s name is corrected to Charles R.S. Haines.

  • 04 October 2018

    First author���s name is corrected to Charles R.S. Haines.

References

  1. 1.

    Y. Song, Z. Yamani, C. Cao, Y. Li, C. Zhang, J.S. Chen, Q. Huang, H. Wu, J. Tao, Y. Zhu, W. Tian, S. Chi, H. Cao, Y. Huang, M. Dantz, T. Schmitt, R. Yu, A. Nevidomskyy, E. Morosan, P. Dai, Nat. Commun. 7, 13879 (2016)

  2. 2.

    H.-J. Kim, C.R.S. Haines, C. Liu, S.H. Chun, K.H. Kim, H.T. Yi, S.-W. Cheong, S.S. Saxena, Low Temp. Phys. 43, 901 (2017)

  3. 3.

    S.E. Rowley, L.J. Spalek, R.P. Smith, M.P.M. Dean, M. Itoh, J.F. Scott, G.G. Lonzarich, S.S. Saxena, Nat. Phys. 10, 367 (2014)

  4. 4.

    P. Monthoux, G.G. Lonzarich, Phys. Rev. B 66, 224504 (2002)

  5. 5.

    W. Klingen, G. Eulenberger, H. Hahn, Die Naturwissenschaften 55, 229 (1968)

  6. 6.

    G. Ouvrard, R. Brec, J. Rouxel, Mater. Res. Bull. 20, 1181 (1985)

  7. 7.

    R. Brec, D.M. Schleich, G. Ouvrard, A. Louisy, J. Rouxel, Inorg. Chem. 18, 1814 (1979)

  8. 8.

    K.C. Rule, G.J. McIntyre, S.J. Kennedy, T.J Hicks, Phys. Rev. B 76, 134402 (2007)

  9. 9.

    S. Kurosawa, K. Saito, Y. Yamaguchi, J. Phys. Soc. Jpn 52, 3919 (1983)

  10. 10.

    K. Ichimura, M. Sano, Synth. Met. 45, 203 (1991)

  11. 11.

    P.A. Joy, S. Vasudevan, Phys. Rev. B 46 5425 (1992)

  12. 12.

    G. Le Flem, R. Brec, G. Ouvard, A. Louisy, P. Segransan, J. Phys. Chem. Solids 43, 455 (1982)

  13. 13.

    J. Rouxel, P. Molinie, L.H. Top, J. Power Sources 9, 345 (1983)

  14. 14.

    N. Kurita, K. Nakao, J. Phys. Soc. Jpn 58, 610 (1989)

  15. 15.

    N. Kurita, K. Nakao, J. Phys. Soc. Jpn 58, 232 (1989)

  16. 16.

    V. Grasso, L. Silipigni, Rivista Del Nuovo Cimento 25, 1 (2002)

  17. 17.

    D. Lançon, H.C. Walker, E. Ressouche, B. Ouladdiaf, K.C. Rule, G.J. McIntyre, T.J. Hicks, H.M. Rønnow, A.R. Wildes, Phys. Rev. B 94, 214407 (2016)

  18. 18.

    A.R. Wildes et al., Phys. Rev. B 92, 224408 (2015)

  19. 19.

    A.R. Wildes, K.C. Rule, R.I. Bewley, M. Enderle, T.J. Hicks, J. Phys.: Condens. Matter, 24, 416004 (2012)

  20. 20.

    A.R. Wildes, H.M. Rønnow, B. Roessli, M.J. Harris, K.W. Godfre, Phys. Rev. B 74, 094422 (2006)

  21. 21.

    A.R. Wildes, B. Roessli, B. Lebech, K.W. Godfrey, J. Phys.: Condens. Matter, 10, 6417 (1998)

  22. 22.

    J.U. Lee, S.M. Lee, J.H. Ryoo, S.M. Kang, T.Y. Kim, P.W. Kim, C.H. Park, J.G. Park, H.S. Cheong, Nano Lett. 16, 7433 (2016)

  23. 23.

    V. Grasso, S. Santangelo, M. Piacentini, Solid State Ion. 20, 9 (1986)

  24. 24.

    M.H. Whangbo, R. Brec, G. Ouvrard, J. Rouxel, Inorg. Chem. 24, 2459 (1985)

  25. 25.

    V. Zhukov, S. Alvarez, D. Novikov, J. Phys. Chem. Solids 57, 647 (1996)

  26. 26.

    M. Piacentini, F.S. Khumalo, C.G. Olson, J.W. Anderegg, D.W. Lynch, Chem. Phys. 65, 289 (1982)

  27. 27.

    C.R.S. Haines, M.J. Coak, P. Nahai-Williamson, C. Liu, S.S. Saxena, Pressure induced insulator-to-metal transition in FePS3, in SCES2014 (2014), number We-217, p. 788

  28. 28.

    M. Tsurubayashi, K. Kodama, M. Kano, K. Ishigaki, Y. Uwatoko, T. Watanabe, K. Takase, Y. Takano, Pressure dependence of electric resistivity of FePS3, Nihon University Science and Engineering Office, Academic Lecture Abstract Collection

  29. 29.

    C.R.S. Haines, M.J. Coak, G.I. Lampronti, C. Liu, H. Hamidov, A.R. Wildes, D. Daisenberger, P. Nahai-Williamson, S.S. Saxena, Structural and electronic phase transitions in FePS3 under the application of pressure, https://doi.org/ArXiv:1801.10089 (2018)

  30. 30.

    K. Momma, F. Izumi, J. Appl. Cryst. 44, 1272 (2011)

  31. 31.

    S.-W. Cheong, M. Mostovoy, Nat. Mater. 6, 13 (2007)

  32. 32.

    T. Katsufuji, H. Takagi, Phys. Rev. B 64, 054415 (2001)

  33. 33.

    M. Bruhwiler, S.M. Kazakov, N.D. Zhigadlo, J. Karpinski, B. Batlogg, Phys. Rev. B 70, 020503 (2004)

  34. 34.

    H. Kawamura, J. Phys.: Condens. Matter 10, 4707 (1998)

  35. 35.

    J.S. Gardner, M.J.P. Gingras, J.E. Greedan, Rev. Mod. Phys. 82, 53 (2010)

  36. 36.

    B.J. Powell, R.H. McKenzie, Rep. Prog. Phys. 74, R827 (2011)

  37. 37.

    H.T. Diep (Ed.), Frustrated Spin Systems (World-Scientific, 2004)

  38. 38.

    P.W. Anderson, Mater. Res. Bull. 8, 153 (1973)

  39. 39.

    R. Coldea, D.A. Tennant, A.M. Tsvelik, Z. Tylczynski, Phys. Rev. Lett. 86, 1335 (2001)

  40. 40.

    R. Coldea, D.A. Tennant, R.A. Cowley, D.F. McMorrow, B. Dorner, Z. Tylczynski, J. Phys.: Condens. Matter 8, 7473 (1996)

  41. 41.

    R. Coldea, D.A. Tennant, K. Habicht, P. Smeibidl, C. Wolters, Z. Tylczynski, Phys. Rev. Lett. 88, 137203 (2002)

  42. 42.

    R. Coldea, D.A. Tennant, Z. Tylczynski, Phys. Rev. B 68, 134424 (2003)

  43. 43.

    Y. Tokiwa, T. Radu, R. Coldea, H. Wilhelm, Z. Tylczynski, F. Steglich, Phys. Rev. B 73, 134414 (2006)

  44. 44.

    T. Radu, H. Wilhelm, V. Yushankhai, D. Kovrizhin, R. Coldea, Z. Tylczynski, T. Luhmann, F. Steglich, Phys. Rev. Lett. 95, 127202 (2005)

  45. 45.

    B. Morosin, E.C. Lingafelter, J. Phys. Chem. 65, 50 (1961)

Download references

Author information

Correspondence to Siddharth S. Saxena.

Additional information

Contribution to the Topical Issue “Coexistence of Long-Range Orders in Low-dimensional Systems”, edited by Sudhakar Yarlagadda and Peter B. Littlewood.

The original version of this article was revised: First author’s name is corrected to Charles R.S. Haines.

Rights and permissions

Open Access This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://doi.org/creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Haines, C.R.S., Saxena, S.S. Emergence of novel phenomena on the border of low dimensional spin and charge order. Eur. Phys. J. B 91, 196 (2018). https://doi.org/10.1140/epjb/e2018-90358-3

Download citation