Advertisement

First principles calculations of the thermoelectric properties of α-MnO2 and β-MnO2

  • Mirriam ChepkoechEmail author
  • Daniel P. Joubert
  • George O. Amolo
Regular Article
  • 113 Downloads

Abstract

Oxide based thermoelectric materials have gained considerable interest due to their abundance, low toxic nature and high temperature stability. In the present work, we report the thermoelectric properties of α-MnO2 and β-MnO2 investigated using the Density Functional Theory with a Hubbard correction as implemented in the VASP code. Our calculated band gaps 0.27 eV and 1.28 eV for β-MnO2 and α-MnO2, respectively, are in excellent agreement with the experimental values and hence demonstrate the importance of including a Hubbard correction (U) in studying the physical and electronic properties of manganese oxides. The calculated elastic constants obey the Born Huang elastic stability criteria and therefore indicate that the studied materials are mechanically stable. The computed phonon band structures and the vibrational density of states do not have imaginary frequencies throughout the Brillouin zone and hence is a clear indication of the dynamic stability of these materials. Our calculated lattice thermal conductivities (κL) show a strong anisotropic behaviour along the a and c directions. At room temperature, the results show that acoustic phonon modes contribute ~56.0(55.8)% in α-MnO2 and ~80.4(73.8)% in β-MnO2 to the total κL along the a(c) directions respectively. In addition, the thermoelectric transport coefficients; σ and S2σ display an anisotropic behaviour between a and c directions. We obtained higher power factors, i.e., (447)(435) μW/m K2 for α-MnO2 and (134)(225) μW/m K2 for β-MnO2 with hole doping concentration of 1020 cm−3 along the a(c) directions respectively compared to that of Bi2Te3 (40 μW/K2cm) at 300 K. This large thermoelectric power suggests that these materials may be potential candidates for thermoelectric applications. However, our calculated dimensionless figure of merit for β-MnO2 and α-MnO2 are quite small due to large values of lattice thermal conductivities. Our highest computed ZT values are 0.02 for β-MnO2 with hole doping concentration of 1021 cm−3, and 0.14 for α-MnO2 with electron carrier concentration of 1021 cm−3 at 800 K along the c-direction.

Graphical abstract

Keywords

Solid State and Materials 

References

  1. 1.
    P.K. Rawat, B. Paul, P. Banerji, Nanotechnology 24, 215401 (2013) ADSCrossRefGoogle Scholar
  2. 2.
    D.M. Rowe, CRC Handbook of Thermoelectrics (CRC Press, New York, 1995) Google Scholar
  3. 3.
    C.B. Vining, Nat. Mater. 8, 83 (2009) ADSCrossRefGoogle Scholar
  4. 4.
    T.M. Tritt, M. Subramanian, Mater. Res. Bull. 31, 188 (2006) CrossRefGoogle Scholar
  5. 5.
    M. Hirata, Syou Enerugi Ron, Ohmu Sha, Tokyo, 37 (1994) [in Japanese] Google Scholar
  6. 6.
    W. Xie, A. Weidenkaff, X. Tang, Q. Zhang, J. Poon, T.M. Tritt, Nanomaterials 2, 379 (2012) CrossRefGoogle Scholar
  7. 7.
    X.C.C.Tong, Advanced Materials for Thermal Management of Electronic Packaging (Springer, 2011) Google Scholar
  8. 8.
    J. He, Y. Liu, R. Funahashi, J. Mater. Res. 26, 1762 (2011) ADSCrossRefGoogle Scholar
  9. 9.
    S. Walia, S. Balendhran, H. Nili, S. Zhuiykov, G. Rosengarten, Q.H. Wang, M. Bhaskaran, S. Sriram, M.S. Strano, K. Kalantar-zadeh, Prog. Mater. Sci. 58, 1443 (2013) CrossRefGoogle Scholar
  10. 10.
    I. Terasaki, Y. Sasago, K. Uchinokura, Phys. Rev. B 56, R12685 (1997) ADSCrossRefGoogle Scholar
  11. 11.
    S. Ohta, T. Nomura, H. Ohta, M. Hirano, H. Hosono, K. Koumoto, Appl. Phys. Lett. 87, 092108 (2005) ADSCrossRefGoogle Scholar
  12. 12.
    R. Kumar, S. Sithambaram, S. Suib, J. Catal. 262, 304 (2009) CrossRefGoogle Scholar
  13. 13.
    L. Wang, C. Meng, M. Han, W. Ma, J. Colloid InterfaceSci. 325, 31 (2008) ADSCrossRefGoogle Scholar
  14. 14.
    M.M. Thackeray, Prog. Solid State Chem. 25, 1 (1997) CrossRefGoogle Scholar
  15. 15.
    F. Cheng, J. Zhao, W. Song, C. Li, H. Ma, J. Chen, P. Shen, Inorg. Chem. 45, 2038 (2006) CrossRefGoogle Scholar
  16. 16.
    Y. Xia, K. Tatsumi, T. Fujieda, P.P. Prosini, T. Sakai, J. Electrochem. Soc. 147, 2050 (2000) CrossRefGoogle Scholar
  17. 17.
    F.F. Song et al., Nanotechnology 23, 085401 (2012) ADSCrossRefGoogle Scholar
  18. 18.
    A.J. Goldsmid, A.R. Sheard, D.A. Wright, Br. J. Appl. Phys. 9, 365 (1958) ADSCrossRefGoogle Scholar
  19. 19.
    H. Sato, T. Enoki, Phys. Rev. B 61, 3563 (2000) ADSCrossRefGoogle Scholar
  20. 20.
    S. Walia, S. Balendhran, P. Yi, D. Yao, S. Zhuiykov, M. Pannirselvam, R. Weber, M.S. Strano, M. Askaran, S. Sriram, K. Kalantar-zadeh, J. Phys. Chem. C 117, 9137 (2013) CrossRefGoogle Scholar
  21. 21.
    A.K.M. Farid ul Islam, R. Islam, K.A. Khan, J. Mater. Sci.: Mater. Electron. 16, 203 (2005) Google Scholar
  22. 22.
    D. Music, J.M. Schneider, J. Phys.: Condens. Matter 27, 115302 (2015) ADSGoogle Scholar
  23. 23.
    E. Preisler, J. Appl. Electrochem. 6, 311 (1976) CrossRefGoogle Scholar
  24. 24.
    M. Hedden, N. Francis, J.T. Haraldsen, T. Ahmed, C. Constantin, Nanoscale Res. Lett. 10, 292 (2015) ADSCrossRefGoogle Scholar
  25. 25.
    M. Shishkin, G. Kresse, Phys. Rev. B 74, 035101 (2006) ADSCrossRefGoogle Scholar
  26. 26.
    G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999) ADSCrossRefGoogle Scholar
  27. 27.
    P.E. Blochl, Phys. Rev. B 50, 17953 (1994) ADSCrossRefGoogle Scholar
  28. 28.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) ADSCrossRefGoogle Scholar
  29. 29.
    J.P. Perdew, A. Ruzsinszky, I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, K. Burke, Phys. Rev. Lett. 100, 136406 (2008) ADSCrossRefGoogle Scholar
  30. 30.
    J.L.F. da Silva, V. Ganduglia-Pirovano, J. Sauer, V. Bayer, G. Kresse, Phys. Rev. B 75, 045121 (2007) ADSCrossRefGoogle Scholar
  31. 31.
    C. Franchini, V. Bayer, R. Podloucky, J. Paier, G. Kresse, Phys. Rev. B 72, 045132 (2005) ADSCrossRefGoogle Scholar
  32. 32.
    C. Franchini, R. Podloucky, J. Paier, M. Marsman, G. Kresse, Phys. Rev. B 75, 195128 (2007) ADSCrossRefGoogle Scholar
  33. 33.
    S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, A.P. Sutton, Phys. Rev. B 57, 1505 (1998) ADSCrossRefGoogle Scholar
  34. 34.
    F. Birch, Phys. Rev. 71, 809 (1947) ADSCrossRefGoogle Scholar
  35. 35.
    Y.L. Page, P. Saxe, Phys. Rev. B, 65, 104104 (2002) ADSCrossRefGoogle Scholar
  36. 36.
    A. Togo, I. Tanaka, Scr. Mater. 108, 1 (2015) CrossRefGoogle Scholar
  37. 37.
    A. Togo, L. Chaput, I. Tanaka, Phys. Rev. B 91, 094306 (2015) ADSCrossRefGoogle Scholar
  38. 38.
    J.M. Ziman, Electrons and Phonons (Oxford University Press, New York, 2001) Google Scholar
  39. 39.
    G.K.H. Madsen, D.J. Singh, Comput. Phys. Commun. 67, 175 (2006) Google Scholar
  40. 40.
    H.J. Xiang, D.J. Singh, Phys. Rev. B 76, 195111 (2007) ADSCrossRefGoogle Scholar
  41. 41.
    A.F. May, D.J. Singh, G.J. Snyder, Phys. Rev. B 79, 153101 (2009) ADSCrossRefGoogle Scholar
  42. 42.
    L.L. Wang, L. Miao, Z.Y. Wang, W. Wei, R. Xiong, H.J. Liu, J. Shi, X.F. Tang, J. Appl. Phys. 105, 013709 (2009) ADSCrossRefGoogle Scholar
  43. 43.
    S.G. Kim, I.I. Mazin, D.J. Singh, Phys. Rev. B 57, 6199 (1998) ADSCrossRefGoogle Scholar
  44. 44.
    D.J. Singh, Phys. Rev. B 81, 195217 (2010) ADSCrossRefGoogle Scholar
  45. 45.
    S. Singh, D. Kumar, S.K. Pandey, Phys. Lett. A 381, 3101 (2017) ADSCrossRefGoogle Scholar
  46. 46.
    N. Yamamoto, T. Endo, M. Shimada, T. Takada, Jpn. J. Appl. Phys. 13, 723 (1974) ADSCrossRefGoogle Scholar
  47. 47.
    J. Paier, M. Marsman, C. Franchini, R. Podloucky, G. Kresse, Phys. Rev. B 75, 195128 (2007) ADSCrossRefGoogle Scholar
  48. 48.
    W.H. Baur, Acta Crystallogr. Sect. B 32, 2200 (1976) CrossRefGoogle Scholar
  49. 49.
    N. Yusuke, O. Kaoru, N. Shinichiro, Phys. Chem. Chem. Phys. 18, 13294 (2016) CrossRefGoogle Scholar
  50. 50.
    J.B. Yang, X.D. Zhou, W.J. James, S.K. Malik, C.S. Wang, Appl. Phys. Lett. 85, 3160 (2004) ADSCrossRefGoogle Scholar
  51. 51.
    C.S. Johnson, D.W. Dees, M.F. Mansuetto, M.M. Thackeray, D.R. Vissers, D. Argyriou, C.K. Loong, L. Christenen, J. Power Sources 68, 570 (1997) ADSCrossRefGoogle Scholar
  52. 52.
    R. Druilhe, J. Suchet, Czech. J. Phys. 17, 337 (1967) ADSCrossRefGoogle Scholar
  53. 53.
    T. Gao, H. Fjellvag, P. Norby, Anal. Chim. Acta 648, 235 (2009) CrossRefGoogle Scholar
  54. 54.
    D.C. Wallace, Thermodynamics of Crystals (Wiley, New York, 1972) Google Scholar
  55. 55.
    M.K. Yaakob, N.H. Hussin, M.K.M. Taib, T.I.T. Kudin, O.H. Hassan, A.M.M. Ali, M.Z.A Yahya, Integr. Ferroelect. 155, 15 (2005) CrossRefGoogle Scholar
  56. 56.
    A.J. Devey, J. Nucl. Mater. 412, 301 (2011) ADSCrossRefGoogle Scholar
  57. 57.
    M. Sanati, R.C. Albers, T. Lookman, A. Saxena, Phys. Rev. B 84, 014116 (2011) ADSCrossRefGoogle Scholar
  58. 58.
    O. Beckstein, J.E. Klepeis, G.L.W. Hart, O. Pankratov, Phys. Rev. B 63, 134112 (2001) ADSCrossRefGoogle Scholar
  59. 59.
    F. Birch, Phys. Rev. 71, 809 (1947) ADSCrossRefGoogle Scholar
  60. 60.
    G.P. Srivastava, Physics of Phonons (CRC Press, 1990) Google Scholar
  61. 61.
    D.C. Wallace, Thermodynamics of Crystals (Dover Publications, 1998) Google Scholar
  62. 62.
    M.T. Dove, Introduction to Lattice Dynamics (Cambridge University Press, 1993) Google Scholar
  63. 63.
    G.J. Snyder, E.S. Toberer, Nat. Mater. 7, 105 (2008) ADSCrossRefGoogle Scholar
  64. 64.
    J.M. Yang, Y.L. Yan, Y.X. Wang, G. Yang, RSC Adv. 4, 28714 (2014) CrossRefGoogle Scholar
  65. 65.
    K.P. Ong, D.J. Singh, P. Wu, Phys. Rev. B 83, 115110 (2011) ADSCrossRefGoogle Scholar
  66. 66.
    G. Yumnam, T. Pandey, A.K. Singh, J. Chem. Phys. 143, 234704 (2015) ADSCrossRefGoogle Scholar
  67. 67.
    G. Shi, E. Kioupakis, J. Appl. Phys. 117, 065103 (2015) ADSCrossRefGoogle Scholar
  68. 68.
    T. Caillat, M. Carle, P. Pierrat, H. Scherrer, S. Scherrer, J. Phys. Chem. Solids 53, 1121 (1992) ADSCrossRefGoogle Scholar
  69. 69.
    N. Miao, B. Xu, N.C. Bristowe, D.I. Bilc, M.J. Verstraete, P. Ghosez, J. Phys. Chem. C 120, 9112 (2016) CrossRefGoogle Scholar
  70. 70.
    M. Ohtaki, T. Tsubota, K. Eguchi, H. Ara, J. Appl. Phys. 79, 3 (1996) CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Mirriam Chepkoech
    • 1
    Email author
  • Daniel P. Joubert
    • 2
  • George O. Amolo
    • 1
    • 2
  1. 1.The National Institute for Theoretical Physics, School of Physics and Mandelstam Institute for Theoretical Physics, University of the WitwatersrandJohannesburg, WitsSouth Africa
  2. 2.Department of Physics and Space ScienceThe Technical University of Kenya (TU-K)NairobiKenya

Personalised recommendations