Advertisement

Anisotropic giant magnetoresistive effect in the sandwich based FexNi1−x (x ≈ 0.5) and Cu

  • Yurii O. Shkurdoda
  • Leonid V. Dekhtyaruk
  • Andrii G. Basov
  • Anatoliy P. Kharchenko
  • Anatoliy M. Chornous
  • Yurii M. ShabelnykEmail author
Regular Article
  • 26 Downloads

Abstract

The anisotropic effect of a giant magnetoresistance (GMR) in the three-layer FexNi1−x/Cu/FexNi1−x/Sub (x ≈ 0.5, Sub is the substrate) magnetically ordered film is analyzed experimentally and theoretically using the phenomenological approach. It is shown that in the case when the direction of the current density vector j coincides with the direction of the local magnetization vector M (jM) in magnetic layers, the consideration of the resistance anisotropy results in a decrease in the magnitude of the GMR effect; and while the vectors are mutually perpendicular in the film plane (jM), the GMR value increases. The analysis of the size dependence (dependence of the top magnetic layer on the thickness dm2) of the magnetoresistance ratio (MR ratio) shows that, in the case of the isotropic GMR effect, when inequalities dm2 << dm1 (dm2 >> dm1) (dm1 is the thickness of the bottom magnetic layer) hold, the indicated effect is negligible due to shunting of the top layer resistance by the base layer resistance (shunting of the base layer resistance by the top-layer resistance). In the case when the magnetic layer thicknesses are comparable in size (dm1 ~ dm2), the magnitude of the anisotropic giant magnetoresistance (AGMR) acquires its maximum (amplitude) value because of the absence of the shunting effect. The method for calculating the asymmetry parameter αlj=l0j+l0j (l0js is the spin-dependent free path of charge carriers in the s = ±th spin channel of the jth magnetic layer), which characterizes the difference in the free paths of electrons in the spin conduction channels, is proposed for the first time.

Graphical abstract

Keywords

Solid State and Materials 

References

  1. 1.
    C. Wang, X. Xiao, H. Hu, Y. Rong, T.Y. Hsu, Physica B 392, 72 (2007) CrossRefGoogle Scholar
  2. 2.
    Y.O. Shkurdoda, A.M. Chornous, Yu.M. Shabelnyk, V.B. Loboda, J. Magn. Magn. Mater. 443, 190 (2017) CrossRefGoogle Scholar
  3. 3.
    A.V. Svalov, I.R. Aseguinolaza, A. Garcia-Arribas, I. Orue, J.M. Barandiaran, J. Alonso, M.L. Fernández-Gubieda, G.V. Kurlyandskaya, IEEE. Trans. Magn. 46, 333 (2010) CrossRefGoogle Scholar
  4. 4.
    A.M. Chornous, Y.O. Shkurdoda, V.B. Loboda, Y.M. Shabelnyk, V.O. Kravchenko, Eur. Phys. J. Plus 132, 58 (2017) CrossRefGoogle Scholar
  5. 5.
    A. Fert, P. Grünberg, A. Barthelemy, F. Petroff, W. Zinn, J. Magn. Magn. Mater. 140, 1 (1995) CrossRefGoogle Scholar
  6. 6.
    G. Binasch, P. Grünberg, F. Saurenbach, W. Zinn, Phys. Rev. B 39, 4828(R) (1989) CrossRefGoogle Scholar
  7. 7.
    M.N. Baibich, J.M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, J. Chazelas, Phys. Rev. Lett. 61, 2472 (1988) CrossRefGoogle Scholar
  8. 8.
    S. Zsurzsa, L. Péter, L.F. Kiss, I. Bakonyi, J. Magn. Magn. Mater. 421, 194 (2017) CrossRefGoogle Scholar
  9. 9.
    E.Y. Tsymbal, D.G. Pettifor, Perspectives of Giant Magnetoresistance, in Solid state physics, edited by H. Ehrenreich, F. Spaepen (Academic, San Diego, CA, 2001) Vol. 56, p. 113 Google Scholar
  10. 10.
    O.I. Tovstolytkin, M.O. Borovyi, V.V. Kurylyuk, Yu.A. Kunytskyi, Fizychni osnovy spintroniky (V.: TOV ≪Nilan – LTD ≫, 2014), 514 p. [In Ukrainian] Google Scholar
  11. 11.
    J. Mathon, Magnetic thin films and industrial application (Springer-Verlag, Berlin, 2001) Google Scholar
  12. 12.
    S.S.P. Parkin, Annu. Rev. Mater. Sci. 25, 357 (1995) CrossRefGoogle Scholar
  13. 13.
    L.V. Dekhtyaruk, A.P. Kharchenko, Y.O. Shkurdoda, A.G. Basov, A.M. Chornous, Y.M. Shabelnyk, in Proceedings ofthe 2017 IEEE 7th International Conference on Nanomaterials: Applications and Properties (NAP) Part 2, 02MFPM04, Odessa, Ukraine (IEEE, USA, 2017) Google Scholar
  14. 14.
    N.F. Mott, Adv. Phys. 13, 325 (1964) CrossRefGoogle Scholar
  15. 15.
    A. Fert, I.A. Campbell, J. Phys. F 6, 849 (1976) CrossRefGoogle Scholar
  16. 16.
    A.G. Basov, S.I. Vorobiov, Y.O. Shkurdoda, L.V. Dekhtyaruk, J. Nano Electron Phys. 2, 69 (2010) Google Scholar
  17. 17.
    A.B. Granovskiy, A.V. Vedyayev, A.V. Kalitsov, Phys. Solid State 37, 337 (1995) [In Russian] Google Scholar
  18. 18.
    A.B. Granovskiy, A.V. Vedyayev, B. Diyeni, A.V. Kalitsov, M.G. Chshyev, Phys. Solid State 38, 2471 (1996) [In Russian] Google Scholar
  19. 19.
    A.P. Malozemoff, Phys. Rev. B 34, 1853 (1986) CrossRefGoogle Scholar
  20. 20.
    Y.O. Shkurdoda, L.V. Dekhtyaruk, A.M. Chornous, A.G. Basov, A.P. Kharchenko, in Proceedings of the 6th International Conference on Nanomaterials: Applications and Properties, NAP-2016, 5 No 2, 02MFPM05, Lviv, Ukraine (IEEE, USA, 2016) Google Scholar

Copyright information

© EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electronics, General and Applied PhysicsSumy State University40007 SumyUkraine
  2. 2.Kharkiv National University of Civil Engineering and ArchitectureKharkivUkraine

Personalised recommendations