Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

A theoretical investigation of structural, mechanical, electronic and thermoelectric properties of orthorhombic CH3NH3PbI3

  • 244 Accesses

  • 2 Citations

Abstract

The structural, mechanical, electronic and thermoelectric properties of the low temperature orthorhombic perovskite phase of CH3NH3PbI3 have been investigated using density functional theory (DFT). Elastic parameters bulk modulus B, Young’s modulus E, shear modulus G, Poisson’s ratio ν and anisotropy value A have been calculated by the Voigt–Reuss–Hill averaging scheme. Phonon dispersions of the structure were investigated using a finite displacement method. The relaxed system is dynamically stable, and the equilibrium elastic constants satisfy all the mechanical stability criteria for orthorhombic crystals, showing stability against the influence of external forces. The lattice thermal conductivity was calculated within the single-mode relaxation-time approximation of the Boltzmann equation from first-principles anharmonic lattice dynamics calculations. Our results show that lattice thermal conductivity is anisotropic, and the corresponding lattice thermal conductivity at 150 K was found to be 0.189, 0.138, and 0.530 Wm−1K−1 in the a, b, and c directions. Electronic structure calculations demonstrate that this compound has a DFT direct band gap at the gamma point of about 1.57 eV. The electronic transport properties have been calculated by solving the semiclassical Boltzmann transport equation on top of DFT calculations, within the constant relaxation time approximation. The Seebeck coefficient S is almost constant from 50 to 150 K. At temperatures 100 and 150 K, the maximal figure of merit is found to be 0.06 and 0.122 in the direction of the c-axis, respectively.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    M.A. Green, A. Ho-Baillie, H.J. Snaith, Nat. Photon. 8, 506 (2014)

  2. 2.

    Q. Chen, N. De Marco, Y.M. Yang, T.B. Song, C.C. Chen, H. Zhao, Z. Hong, H. Zhou, Y. Yang, Nano Today 10, 355 (2015)

  3. 3.

    Y.Y. Zhang, S. Chen, P. Xu, H. Xiang, X.G. Gong, A. Walsh, S.H. Wei, https://doi.org/arXiv:1506.01301 (2015)

  4. 4.

    D. Weber Z. Naturforschung. B 33, 1443 (1978)

  5. 5.

    T. Baikie, Y. Fang, J.M. Kadro, M. Schreyer, F. Wei, S.G. Mhaisalkar, M. Graetzel, T.J. White, J. Mater. Chem. A 1, 5628 (2013)

  6. 6.

    F. Brivio, J.M. Frost, J.M. Skelton, A.J. Jackson, O.J. Weber, M.T. Weller, A.R. Goni, A.M.A. Leguy, P.R.F. Barnes, A. Walsh, Phys. Rev. B 92, 144308 (2015)

  7. 7.

    J. Feng, APL Mater. 2, 081801 (2014)

  8. 8.

    A. Pisoni, J. Jacimovic, O.S. Barisic, M. Spina, R. Gaál, L. Forró, E. Horváth, J. Phys. Chem. Lett. 5, 2488 (2014)

  9. 9.

    C.C. Stoumpos, C.D. Malliakas, M.G. Kanatzidis, Inorg. Chem. 52, 9019 (2013)

  10. 10.

    X. Mettan, R. Pisoni, P. Matus, A. Pisoni, J. Jacimovic, B. Náfrádi, M. Spina, D. Pavuna, L. Forró, E. Horváth, J. Phys. Chem. C 119, 11506 (2015)

  11. 11.

    X. Qian, X. Gu, R. Yang, Appl. Phys. Lett. 108, 063902 (2016)

  12. 12.

    S.D. Guo, J.L. Wang, RSC Adv. 6, 101552 (2016)

  13. 13.

    H.J. Goldsmid, G.S. Nolas, J. Sharp,Thermoelectrics: basic principles and new materials developments (Springer, Berlin, Heidelberg, Germany, 2001)

  14. 14.

    T. Zhao, D. Wang, Z. Shuai, Synth. Met. 225, 108 (2017)

  15. 15.

    Y. He, G. Galli, Chem. Mater. 26, 5394 (2014)

  16. 16.

    C. Lee, J. Hong, A. Stroppa, M.H. Whangbo, J.H. Shim, RSC Adv. 5, 78701 (2015)

  17. 17.

    I.O.A. Ali, D.P. Joubert, M.S.H. Suleiman, Mater. Today: Proc. 5, 10570 (2018)

  18. 18.

    W.J. Yin, J.H. Yang, J. Kang, Y. Yan, S.H. Wei, J. Mater. Chem. 3, 8926 (2015)

  19. 19.

    Y. Wang, T. Gould, J.F. Dobson, H. Zhang, H. Yang, X. Yao, H. Zhao, Phys. Chem. Chem. Phys. 16, 1424 (2013)

  20. 20.

    W. Setyawan, S. Curtarolo, Comput. Mater. Sci. 49, 299 (2010)

  21. 21.

    P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964)

  22. 22.

    W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965)

  23. 23.

    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

  24. 24.

    J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, K. Burke, Phys. Rev. Lett. 100, 136406 (2008)

  25. 25.

    G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999)

  26. 26.

    G. Kresse, J. Hafner, Phys. Rev. B 47, 558 (1993)

  27. 27.

    G. Kresse, J. Hafner, Phys. Rev. B 49, 14251 (1994)

  28. 28.

    F. Mouhat, X. Coudert François, Phys. Rev. B 90, 224104 (2014)

  29. 29.

    W. Voigt,Lehrbuch der Kristallphysik: mit Ausschluss der Kristalloptik, B.G. Teubners Sammlung von Lehrbüchern auf dem Gebiete der mathematischen Wissenschaften mit Einschluss ihrer Anwendungen (J.W. Edwards, Ann Arbor, MI, 1928)

  30. 30.

    A. Reuss, Z. Angew. Math. Mech. 9, 49 (1929)

  31. 31.

    R. Hill, Proc. Phys. Soc. Sect. A 65, 349 (1952)

  32. 32.

    D. Connétable, O. Thomas, Phys. Rev. B 79, 094101 (2009)

  33. 33.

    P. Ravindran, L. Fast, P.A. Korzhavyi, B. Johansson, J. Wills, O. Eriksson, J. Appl. Phys. 84, 4891 (1998)

  34. 34.

    A. Togo, I. Tanaka, Scr. Mater. 108, 1 (2015)

  35. 35.

    A. Togo, L. Chaput, I. Tanaka, Phys. Rev. B 91, 094306 (2015)

  36. 36.

    J.M. Ziman,Principles of the theory of solids (Cambridge University Press, Cambridge, United Kingdom, 1972)

  37. 37.

    G. Pizzi, D. Volja, B. Kozinsky, M. Fornari, N. Marzari, Comput. Phys. Commun. 185, 422 (2014)

  38. 38.

    A. Filippetti, A. Mattoni, C. Caddeo, M.I. Saba, P. Delugas, Phys. Chem. Chem. Phys. 18, 15352 (2016)

  39. 39.

    S. Ambrosch-Draxl, C. Thonhauser, T. Badding, J.O. Sofo, Phys. Rev. B 68, 125210 (2003)

  40. 40.

    I. Souza, N. Marzari, D. Vanderbilt, Phys. Rev. B 65, 035109 (2001)

  41. 41.

    A.A. Mostofi, J.R. Yates, Y.S. Lee, I. Souza, D. Vanderbilt, N. Marzari, Comput. Phys. Commun. 178, 685 (2008)

  42. 42.

    F. Birch, Phys. Rev. 71, 809 (1947)

  43. 43.

    M.S.H.  Suleiman, A Theoretical Investigation of Structural, Electronic and Optical Properties of some Group 10, 11 and 12 Transition-Metal Nitrides, Ph.D. thesis, School of Physics, University of the Witwatersrand, 2013

  44. 44.

    J.Q. Hu, M. Xie, Y. Pan, Y.C. Yang, M.M. Liu, J.M. Zhang, Comput. Mater. Sci. 51, 1 (2012)

  45. 45.

    S.F. Pugh, Lond. Edinb. Dubl. Philos. Mag. J. Sci. 45, 823 (1954)

  46. 46.

    T. Zhao, W. Shi, J. Xi, D. Wang, Z. Shuai, Sci. Rep. 6, 19968 (2016)

  47. 47.

    W.J. Yin, T. Shi, Y. Yan, Appl. Phys. Lett. 104, 063903 (2014)

  48. 48.

    J. Even, L. Pedesseau, M. Jancu Jean, C. Katan, J. Phys. Chem. Lett. 4, 2999 (2013)

  49. 49.

    L. Hedin, Phys. Rev. 139, A796 (1965)

  50. 50.

    T. Ahmed, T. Salim, Y.M. Lam, E.E.M. Chia, J.X. Zhu et al., EPL Europhys. Lett. 108, 67015 (2015)

  51. 51.

    F. Brivio, K.T. Butler, A. Walsh, M. Van Schilfgaarde, Phys. Rev. B 89, 155204 (2014)

  52. 52.

    P. Umari, E. Mosconi, F. De Angelis, Sci. Rep. 4, 4467 (2014)

  53. 53.

    G.J. Snyder, E.S. Toberer, Nat. Mater. 7, 105 (2008)

  54. 54.

    S. Bagci, B.G. Yalcin, H.A.R. Aliabad, S. Duman, B. Salmankurt, RSC Adv. 6, 59527 (2016)

Download references

Author information

Correspondence to Ibrahim Omer A. Ali.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ali, I.O.A., Joubert, D.P. & Suleiman, M.S.H. A theoretical investigation of structural, mechanical, electronic and thermoelectric properties of orthorhombic CH3NH3PbI3. Eur. Phys. J. B 91, 263 (2018). https://doi.org/10.1140/epjb/e2018-90312-5

Download citation

Keywords

  • Solid State and Materials