Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

On the possibility of magnetic Weyl fermions in non-symmorphic compound PtFeSb

Abstract

Weyl fermions are expected to exhibit exotic physical properties such as the chiral anomaly, large negative magnetoresistance or Fermi arcs. Recently a new platform to realize these fermions has been introduced based on the appearance of a three-fold band crossing at high symmetry points of certain space groups. These band crossings are composed of two linearly dispersed bands that are topologically protected by a Chern number, and a flat band with no topological charge. In this paper, we present a new way of inducing two kinds of Weyl fermions, based on two- and three-fold band crossings, in the non-symmorphic magnetic material PtFeSb. By means of density functional theory calculations and group theory analysis, we show that magnetic order can split a six-fold degeneracy enforced by non-symmoprhic symmetry to create three- or two-fold degenerate Weyl nodes. We also report on the synthesis of a related phase potentially containing two-fold degenerate magnetic Weyl points and extend our group theory analysis to that phase. This is the first study showing that magnetic ordering has the potential to generate new three-fold degenerate Weyl nodes, advancing the understanding of magnetic interactions in topological materials.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    X. Wan, A.M. Turner, A. Vishwanath, S.Y. Savrasov, Phys. Rev. B 83, 205101 (2011)

  2. 2.

    H. Weng, C. Fang, Z. Fang, B.A. Bernevig, X. Dai, Phys. Rev. X 5, 011029 (2015)

  3. 3.

    S.-M. Huang, S.-Y. Xu, I. Belopolski, C.-C. Lee, G. Chang, B. Wang, N. Alidoust, G. Bian, M. Neupane, C. Zhang, S. Jia, A. Bansil, H. Lin, M.Z. Hasan, Nat. Commun. 6, 7373 (2015)

  4. 4.

    B.Q. Lv, H.M. Weng, B.B. Fu, X.P. Wang, H. Miao, J. Ma, P. Richard, X.C. Huang, L.X. Zhao, G.F. Chen, Z. Fang, X. Dai, T. Qian, H. Ding, Phys. Rev. X 5, 031013 (2015)

  5. 5.

    S.-Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C. Zhang, R. Sankar, G. Chang, Z. Yuan, C.-C. Lee, S.-M. Huang, H. Zheng, J. Ma, D.S. Sanchez, B. Wang, A. Bansil, F. Chou, P.P. Shibayev, H. Lin, S. Jia, M.Z. Hasan, Science 349, 613 (2015)

  6. 6.

    H. Nielsen, M. Ninomiya, Phys. Lett. B 130, 389 (1983)

  7. 7.

    J. Xiong, S.K. Kushwaha, T. Liang, J.W. Krizan, M. Hirschberger, W. Wang, R.J. Cava, N.P. Ong, Science 350, 413 (2015)

  8. 8.

    X. Huang, L. Zhao, Y. Long, P. Wang, D. Chen, Z. Yang, H. Liang, M. Xue, H. Weng, Z. Fang, X. Dai, G. Chen, Phys. Rev. X 5, 031023 (2015)

  9. 9.

    J. Liu, D. Vanderbilt, Phys. Rev. B 90, 155316 (2014)

  10. 10.

    M. Hirayama, R. Okugawa, S. Ishibashi, S. Murakami, T. Miyake, Phys. Rev. Lett. 114, 206401 (2015)

  11. 11.

    T.c.v. Bzduš, A. Rüegg, M. Sigrist, Phys. Rev. B 91, 165105 (2015)

  12. 12.

    A. Cortijo, D. Kharzeev, K. Landsteiner, M.A.H. Vozmediano, Phys. Rev. B 94, 241405 (2016)

  13. 13.

    A.A. Soluyanov, D. Gresch, Z. Wang, Q. Wu, M. Troyer, X. Dai, B.A. Bernevig, Nature 527, 495 (2015)

  14. 14.

    G. Bian, T.-R. Chang, R. Sankar, S.-Y. Xu, H. Zheng, T. Neupert, C.-K. Chiu, S.-M. Huang, G. Chang, I. Belopolski, D.S. Sanchez, M. Neupane, N. Alidoust, C. Liu, B. Wang, C.-C. Lee, H.-T. Jeng, C. Zhang, Z. Yuan, S. Jia, A. Bansil, F. Chou, H. Lin, M.Z. Hasan, Nat. Commun. 7, 10556 (2016)

  15. 15.

    S. Singh, A.C. Garcia-Castro, I. Valencia-Jaime, F. Muñoz, A.H. Romero, Phys. Rev. B 94, 161116 (2016)

  16. 16.

    J. Sánchez-Barriga, M.G. Vergniory, D. Evtushinsky, I. Aguilera, A. Varykhalov, S. Blügel, O. Rader, Phys. Rev. B 94, 161401 (2016)

  17. 17.

    B. Bradlyn, L. Elcoro, J. Cano, M.G. Vergniory, Z. Wang, C. Felser, M.I. Aroyo, B.A. Bernevig, Nature 547, 298 (2017)

  18. 18.

    L.M. Schoop, F. Pielnhofer, B.V. Lotsch, Chem. Mater. 30, 3155 (2018)

  19. 19.

    G. Xu, H. Weng, Z. Wang, X. Dai, Z. Fang, Phys. Rev. Lett. 107, 186806 (2011)

  20. 20.

    A.A. Burkov, L. Balents, Phys. Rev. Lett. 107, 127205 (2011)

  21. 21.

    D. Bulmash, C.-X. Liu, X.-L. Qi, Phys. Rev. B 89, 081106 (2014)

  22. 22.

    M. Hirschberger, S. Kushwaha, Z. Wang, Q. Gibson, S. Liang, C.A. Belvina, B. Bernevig, R. Cava, N. Ong, Nat. Mater. 15, 1161 (2016)

  23. 23.

    Z. Wang, M.G. Vergniory, S. Kushwaha, M. Hirschberger, E.V. Chulkov, A. Ernst, N.P. Ong, R.J. Cava, B.A. Bernevig, Phys. Rev. Lett. 117, 236401 (2016)

  24. 24.

    Q. Xu, E. Liu, W. Shi, L. Muechler, C. Felser, Y. Sun, https://doi.org/arXiv:1801.00136 (2018)

  25. 25.

    J.L. Mañes, Phys. Rev. B 85, 155118 (2012)

  26. 26.

    B.J. Wieder, Y. Kim, A.M. Rappe, C.L. Kane, Phys. Rev. Lett. 116, 186402 (2016)

  27. 27.

    B. Bradlyn, J. Cano, Z. Wang, M.G. Vergniory, C. Felser, R.J. Cava, B.A. Bernevig, Science 353, aaf5037 (2016)

  28. 28.

    A. Topp, J.M. Lippmann, A. Varykhalov, V. Duppel, B.V. Lotsch, C.R. Ast, L.M. Schoop, New J. Phys. 18, 125014 (2016)

  29. 29.

    M. Hellenbrandt, Crystallogr. Rev. 10, 17 (2014)

  30. 30.

    S. Zhong, J.E. Moore, I. Souza, Phys. Rev. Lett. 116, 077201 (2016)

  31. 31.

    F. de Juan, A.G. Grushin, T. Morimoto, J.E. Moore, Nat. Commun. 8, 15995 (2017)

  32. 32.

    G. Chang, S.-Y. Xu, B.J. Wieder, D.S. Sanchez, S.-M. Huang, I. Belopolski, T.-R. Chang, S. Zhang, A. Bansil, H. Lin, M.Z. Hasan, Phys. Rev. Lett. 119, 206401 (2017)

  33. 33.

    A. Cortijo, Phys. Rev. B 94, 241105 (2016)

  34. 34.

    L.M. Schoop, A. Topp, J. Lippmann, F. Orlandi, L. Müchler, M.G. Vergniory, Y. Sun, A.W. Rost, V. Duppel, M. Krivenkov, S. Sheoran, P. Manuel, A. Varykhalov, B. Yan, R.K. Kremer, C.R. Ast, B.V. Lotsch, Sci. Adv. 4, eaar2317 (2018)

  35. 35.

    A. Topp, M. G. Vergniory, M. Krivenkov, A. Varykhalov, F. Rodolakis, J.L. McChesney, B.V. Lotsch, C.R. Ast, L.M. Schoop, J. Phys. Chem. Solids (2017) DOI:https://doi.org/10.1016/j.jpcs.2017.12.035

  36. 36.

    B. Bradlyn, M.G. Vergniory, J. Cano, in preparation

  37. 37.

    K.H.J. Buschow, J.H.N. van Vucht, P.G. van Engen, D.B. de Mooij, A.M. van der Kraan, Physica Status Solidi (a) 75, 617 (1983)

  38. 38.

    P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964)

  39. 39.

    W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965)

  40. 40.

    G. Kresse, J. Furthmueller, Comput. Mater. Sci. 6, 15 (1996)

  41. 41.

    G. Kresse, J. Hafner, Phys. Rev. B 48, 13115 (1993)

  42. 42.

    G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999)

  43. 43.

    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

  44. 44.

    D. Hobbs, G. Kresse, J. Hafner, Phys. Rev. B 62, 11556 (2000)

  45. 45.

    L. Elcoro, B. Bradlyn, Z. Wang, M.G. Vergniory, J. Cano, C. Felser, B.A. Bernevig, D. Orobengoa, G. de la Flor, M.I. Aroyo, J. Appl. Crystallogr. 50, 1457 (2017)

  46. 46.

    M.G. Vergniory, L. Elcoro, Z. Wang, J. Cano, C. Felser, M.I. Aroyo, B.A. Bernevig, B. Bradlyn, Phys. Rev. E 96, 023310 (2017)

  47. 47.

    M.I. Aroyo, J.M. Perez-Mato, D. Orobengoa, E. Tasci, G. de la Flor, A. Kirov, Bulg. Chem. Commun. 43, 183 (2011)

  48. 48.

    M.I. Aroyo, J.M. Perez-Mato, C. Capillas, E. Kroumova, S. Ivantchev, G. Madariaga, A. Kirov, H. Wondratschek, Z. Krist. 221, 15 (2006)

  49. 49.

    M.I. Aroyo, A. Kirov, C. Capillas, J.M. Perez-Mato, H. Wondratschek, Acta Cryst. A62, 115 (2006)

  50. 50.

    H.T. Stokes, D.M. Hatch, B.J. Campbell, D.E. Tanner, J. Appl. Crystallogr. 39, 607 (2006)

  51. 51.

    J.M. Perez-Mato, S.V. Gallego, L. Elcoro, E. Tasci, M.I. Aroyo, J. Phys.: Condens. Matter 28, 286001 (2016)

  52. 52.

    J. Perez-Mato, S. Gallego, E. Tasci, L. Elcoro, G. de la Flor, M. Aroyo, Ann. Rev. Mater. Res. 45, 217 (2015)

  53. 53.

    K. Buschow, J. van Vucht, P. van Engen, B. de Mooij, A. van der Kraan, Phys. Status Solidi A 75, 617 (1983)

  54. 54.

    V.N. Antonov, P.M. Oppeneer, A.N. Yaresko, A.Y. Perlov, T. Kraft, Phys. Rev. B 56, 13012 (1997)

  55. 55.

    Y. Kim, B. J. Wieder, C.L. Kane, A.M. Rappe, Phys. Rev. Lett. 115, 036806 (2015)

  56. 56.

    P. Tang, Q. Zhou, S.-C. Zhang, Phys. Rev. Lett. 119, 206402 (2017)

  57. 57.

    T. Eriksson, R. Lizárraga, S. Felton, L. Bergqvist, Y. Andersson, P. Nordblad, O. Eriksson, Phys. Rev. B 69, 054422 (2004)

  58. 58.

    S.C. Miller, W.F. Love,Tables of Irreducible Representations of Space Groups and Co-Representations of Magnetic Space Groups (Pruett Press, Boulder, Colorado, 1967)

  59. 59.

    S. Furuseth, K. Selte, A. Kjekshus, Acta Chem. Scand. 19, 735 (1965)

  60. 60.

    N. Spaldin,Magnetic Materials, Fundamentals and Applications (Cambridge University Press, Cambridge, 2010)

Download references

Author information

Correspondence to Maia G. Vergniory.

Additional information

Contribution to the Topical Issue “Special issue in honor of Hardy Gross”, edited by C.A. Ullrich, F.M.S. Nogueira, A. Rubio, and M.A.L. Marques.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vergniory, M.G., Elcoro, L., Orlandi, F. et al. On the possibility of magnetic Weyl fermions in non-symmorphic compound PtFeSb. Eur. Phys. J. B 91, 213 (2018). https://doi.org/10.1140/epjb/e2018-90302-7

Download citation