Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Ion beam sputter deposition of TiO2 films using oxygen ions

Systematic investigation of the correlation between process parameters and film properties

  • 60 Accesses

  • 3 Citations

Abstract

TiO2 thin films were grown by ion beam sputter deposition (IBSD) using oxygen ions, with the ion energy and geometrical parameters (ion incidence angle, polar emission angle, and scattering angle) being varied systematically. Metallic Ti and ceramic TiO2 served as target materials. The thin films were characterized concerning thickness, growth rate, surface topography, structural properties, mass density, and optical properties. It was found that the scattering geometry has the main impact on the film properties. Target material, ion energy, and ion incidence angle have only a marginal influence. Former studies on reactive IBSD of TiO2 using Ar and Xe ions reported equivalent patterns. Nevertheless, the respective ion species distinctively affects the film properties. For instance, mass density and the refractive index of the TiO2 thin films are remarkably lower for sputtering with oxygen ions than for sputtering with Ar or Xe ions. The variations in the thin film properties are tentatively attributed to the angular and the energy distribution of the film-forming particles, especially, to those of the backscattered primary particles.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    R. Behrisch, W. Eckstein, eds., sputtering by particle bombardment: experiments and computer calculations from threshold to MeV energies (Springer, Berlin, 2007)

  2. 2.

    C. Bundesmann, R. Feder, J. Gerlach, H. Neumann, Thin Solid Films 551, 46 (2014)

  3. 3.

    C. Bundesmann, R. Feder, R. Wunderlich, U. Teschner, M. Grundmann, H. Neumann, Thin Solid Films 589, 487 (2015)

  4. 4.

    R. Feder, C. Bundesmann, H. Neumann, B. Rauschenbach, Nucl. Instrum. Methods Phys. Res. Sect. B 316, 198 (2013)

  5. 5.

    R. Feder, C. Bundesmann, H. Neumann, B. Rauschenbach, Nucl. Instrum. Methods Phys. Res. Sect. B 334, 88 (2014)

  6. 6.

    R. Feder, F. Frost, H. Neumann, C. Bundesmann, B. Rauschenbach, Nucl. Instrum. Methods Phys. Res. Sect. B 317, 137 (2013)

  7. 7.

    N. Albertinetti, H. Minden, Appl. Opt. 35, 5620 (1996)

  8. 8.

    T. Aoki, K. Maki, Q. Tang, Y. Kumagai, S. Matsumoto, J. Vac. Sci. Technol. A 15, 2485 (1997)

  9. 9.

    H. Demiryont, J. Sites, J. Vac. Sci. Technol. A 2, 1457 (1984)

  10. 10.

    J.C. Hsu, C.C. Lee, Appl. Opt. 37, 1171 (1998)

  11. 11.

    C.H. Kao, J.H. Tsai, S.W. Yeh, H.L. Huang, D. Gan, P. Shen, Jpn. J. Appl. Phys. Part 1 51, 045502 (2012)

  12. 12.

    S. Rossnagel, J. Sites, J. Vac. Sci. Technol. A 2, 376 (1984)

  13. 13.

    T. Uchitani, K. Maki, J. Vac. Sci. Technol. A 18, 2706 (2000)

  14. 14.

    S. Ulucan, G. Aygun, L. Ozyuzer, M. Egilmez, R. Turan, J. Optoelectron. Adv. Mater. 7, 297 (2005)

  15. 15.

    W.H. Wang, S. Chao, Opt. Lett. 23, 1417 (1998)

  16. 16.

    S. Chao, W.H. Wang, M.Y. Hsu, L.C. Wang, J. Opt. Soc. Am. A 16, 1477 (1999)

  17. 17.

    S. Chao, W.H. Wang, C.C. Lee, Appl. Opt. 40, 2177 (2001)

  18. 18.

    T. Okamura, Y. Seki, N. Sagawa, Jpn. J. Appl. Phys. Part 1 31, 373 (1992)

  19. 19.

    T. Okamura, Y. Seki, N. Sagawa, Jpn. J. Appl. Phys. Part 1 31, 2233 (1992)

  20. 20.

    C. Bundesmann, T. Lautenschläger, E. Thelander, D. Spemann, Nucl. Instrum. Methods Phys. Res. Sect. B 395, 17 (2017)

  21. 21.

    C. Bundesmann, T. Lautenschläger, D. Spemann, A. Finzel, E. Thelander, M. Mensing, F. Frost, Appl. Surf. Sci. 421, 331 (2017)

  22. 22.

    C. Bundesmann, T. Lautenschläger, D. Spemann, A. Finzel, M. Mensing, F. Frost, Eur. Phys. J. B 90, 187 (2017)

  23. 23.

    M. Mateev, T. Lautenschläger, D. Spemann, A. Finzel, J. Gerlach, F. Frost, C. Bundesmann, Eur. Phys. J. B 91, 45 (2018)

  24. 24.

    T. Lautenschläger, R. Feder, H. Neumann, C. Rice, M. Schubert, C. Bundesmann, Nucl. Instrum. Methods Phys. Res. Sect. B 385, 30 (2016)

  25. 25.

    T. Lautenschläger, C. Bundesmann, J. Vac. Sci. Technol.A 35, 041001 (2017)

  26. 26.

    M. Zeuner, F. Scholze, B. Dathe, H. Neumann, Surf. Coat. Technol. 142, 39 (2001)

  27. 27.

    C. Herzinger, B. Johs, W. McGahan, J. Woollam, W. Paulson, J. Appl. Phys. 83, 3323 (1998)

  28. 28.

    G. Jellison, F. Modine, Appl. Phys. Lett. 69, 371 (1996)

  29. 29.

    G. Jellison, F. Modine, Appl. Phys. Lett. 69, 2137 (1996)

  30. 30.

    H. Águas, N. Popovici, L. Pereira, O. Conde, W.R. Branford, L. Cohen, E. Fortunato, R. Martins, Phys. Status Solidi A 205, 880 (2008)

  31. 31.

    E. Langereis, S. Heil, H. Knoops, W. Keuning, M. van de Sanden, W.M. Kessels, J. Phys. D: Appl. Phys. 42, 073001 (2009)

  32. 32.

    S. Lee, J. Hong, Jpn. J. Appl. Phys. Part 1 39, 241 (2000)

  33. 33.

    K. Postava, M. Aoyama, T. Yamaguchi, H. Oda, Appl. Surf. Sci. 175, 276 (2001)

  34. 34.

    A. Goehlich, N. Niemöller, H. Döbele, Phys. Rev. B 62, 9349 (2000)

  35. 35.

    M. Stepanova, S. Dew, J. Vac. Sci. Technol. A 19, 2805 (2001)

  36. 36.

    M. Stepanova, S. Dew, J. Appl. Phys. 92, 1699 (2002)

  37. 37.

    M. Stepanova, S. Dew, Nucl. Instrum. Methods Phys. Res. Sect. B 215, 357 (2004)

  38. 38.

    F. Boydens, W. Leroy, R. Persoons, D. Depla, Thin Solid Films 531, 32 (2013)

  39. 39.

    D. Rosenberg, G. Wehner, J. Appl. Phys. 33, 1842 (1962)

  40. 40.

    N. Laegreid, G. Wehner, J. Appl. Phys. 32, 365 (1961)

  41. 41.

    R. Kelly, N. Lam, Radiat. Eff. 19, 39 (1973)

  42. 42.

    H. Oechsner, Appl. Phys. 8, 185 (1975)

  43. 43.

    C. Bundesmann, R. Feder, T. Lautenschläger, H. Neumann, Contrib. Plasma Phys. 55, 737 (2015)

  44. 44.

    F. Frost, R. Fechner, B. Ziberi, J. Völlner, D. Flamm, A. Schindler, J. Phys.: Condens. Matter 21, 224026 (2009)

  45. 45.

    S. Mohan, M.G. Krishna, Vacuum 46, 645 (1995)

  46. 46.

    C. Bundesmann, I.M. Eichentopf, S. Mändl, H. Neumann, Thin Solid Films 516, 8604 (2008)

  47. 47.

    M. Laube, F. Rauch, C. Ottermann, O. Anderson, K. Bange, Nucl. Instrum. Methods Phys. Res. Sect. B 113, 288 (1996)

  48. 48.

    J. Szczyrbowski, G. Bräuer, M. Ruske, J. Bartella, J. Schroeder, A. Zmelty, Surf. Coat. Technol. 112, 261 (1999)

  49. 49.

    D. Mergel, D. Buschendorf, S. Eggert, R. Grammes, B. Samset, Thin Solid Films 371, 218 (2000)

  50. 50.

    C. Ottermann, K. Bange, Thin Solid Films 286, 32 (1996)

  51. 51.

    M. Suhail, G.M. Rao, S. Mohan, J. Appl. Phys. 71, 1421 (1992)

  52. 52.

    M. Vergöhl, N. Malkomes, T. Staedler, T. Matthée, U. Richter, Thin Solid Films 351, 42 (1999)

  53. 53.

    D. Mardare, P. Hones, Mater. Sci. Eng. B 68, 42 (1999)

  54. 54.

    N. Hosaka, T. Sekiya, C. Satoko, S. Kurita, J. Phys. Soc. Jpn. 66, 877 (1997)

  55. 55.

    G. Jellison, F. Modine, L. Boatner, Opt. Lett. 22, 1808 (1997)

  56. 56.

    G. Jellison, L. Boatner, J. Budai, B.S. Jeong, D. Norton, J. Appl. Phys. 93, 9537 (2003)

  57. 57.

    S. Tanemura, L. Miao, P. Jin, K. Kaneko, A. Terai, N. Nabatova-Gabain, Appl. Surf. Sci. 212, 654 (2003)

Download references

Author information

Correspondence to Carsten Bundesmann.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pietzonka, L., Lautenschläger, T., Spemann, D. et al. Ion beam sputter deposition of TiO2 films using oxygen ions. Eur. Phys. J. B 91, 252 (2018). https://doi.org/10.1140/epjb/e2018-90293-3

Download citation