Advertisement

Kinetic temperature relaxation and nonequilibrium fluctuations in two-dimensional Lennard–Jones systems during nonstationary heat transfer

  • Marat N. OvchinnikovEmail author
Regular Article

Abstract

The kinetic temperature fluctuations in two-dimensional Lennard–Jones systems are compared under equilibrium and nonequilibrium conditions. The calculated relaxation times of the kinetic temperature to the steady state are of the order of 10−11 s and their values decrease with the energy increasing. It is shown that the distribution functions of the relative fluctuations have the form of Gaussian type, the dispersion in a nonsteady state is more than in a steady one. The characteristic times of the fluctuations decay to the steady state levels are in agreement with the typical characteristic times of nonlocal molecular dynamics models describing nonstationary heat transfer.

Graphical abstract

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    C.R. Cattaneo, Comptes Rendus 247, 431 (1958) Google Scholar
  2. 2.
    D. Jou, J. Casas-Vazquez, G. Lebon, Rep. Prog. Phys. 62, 1035 (1999) CrossRefGoogle Scholar
  3. 3.
    S.L. Sobolev, Sov. Phys. Usp. 167, 1097 (1997) Google Scholar
  4. 4.
    G. Lebon, J. Non-Equilib. Thermodyn. 39, 35 (2014) CrossRefGoogle Scholar
  5. 5.
    S. Lepri, R. Livi, A. Politi, Phys. Rep. 337, 1 (2003) CrossRefGoogle Scholar
  6. 6.
    V. Mendez, S. Fedotov, W. Horsthemke, in Reaction-Transport Systems. Mesoscopic Foundations, Fronts, and Spatial Instabilities, Springer Series in Synergetics (Springer, Berlin, Heidelberg, 2010), pp. 3268 Google Scholar
  7. 7.
    F.J. Alexander, P. Rosenau, Phys. Rev. E 81, 655 (2010) CrossRefGoogle Scholar
  8. 8.
    R. Metzler, J. Klafter, Phys. Rep. 339, 1 (2000) CrossRefGoogle Scholar
  9. 9.
    M.N. Ovchinnikov, Eur. Phys. J. Plus 132, 382 (2017) CrossRefGoogle Scholar
  10. 10.
    A. McGaughey, M. Kaviany, Heat Mass Transfer 47, 1783 (2004) CrossRefGoogle Scholar
  11. 11.
    K.V. Tretiakov, S. Scandolo, J. Phys. Chem. 120, 3765 (2004) CrossRefGoogle Scholar
  12. 12.
    J. Shiomi, S. Maruyama, Phys. Rev. B 73, 205420 (2006) CrossRefGoogle Scholar
  13. 13.
    Q. Liu et al., Prog. Nat. Sci. 39, 999 (2008) CrossRefGoogle Scholar
  14. 14.
    A. Singh, E.B. Tadmor, J. Comput. Phys. 299, 667 (2015) MathSciNetCrossRefGoogle Scholar
  15. 15.
    A.V. Savin et al., Europhys. Lett. 113, 24003 (2016) CrossRefGoogle Scholar
  16. 16.
    A. Cepelotti et al., Nat. Commun. 6, 6400 (2015) CrossRefGoogle Scholar
  17. 17.
    S. Volz et al., Phys. Rev. B 54, 340 (1996) CrossRefGoogle Scholar
  18. 18.
    M.N. Ovchinnikov, G.G. Kushtanova, Res. Phys. 6, 252 (2016) Google Scholar
  19. 19.
    A. Einstein, Ann. Phys. 19, 371 (1906) CrossRefGoogle Scholar
  20. 20.
    M. Smoluchowski, Ann. Phys. 21, 371 (1906) Google Scholar
  21. 21.
    H.B. Callen, T.A. Welton, Phys. Rev. 83, 34 (1951) CrossRefGoogle Scholar
  22. 22.
    M. Falcioni, S. Isola, A. Vulpiani, Phys. Lett. A 144, 341 (2014) CrossRefGoogle Scholar
  23. 23.
    P. Gaspard, J. Stat. Phys. 117, 599 (2004) MathSciNetCrossRefGoogle Scholar
  24. 24.
    M.H. Lee, Phys. Rev. Lett. 98, 190601 (2007) MathSciNetCrossRefGoogle Scholar
  25. 25.
    D.J. Evans, D.J. Searles, E. Mittag, Phys. Rev. E 39, 051105 (2001) CrossRefGoogle Scholar
  26. 26.
    D.J. Searles, D.J. Evans, Int. J. Thermophys. 22, 124 (2001) CrossRefGoogle Scholar
  27. 27.
    A. Giuliani, F. Zamponi, G. Gallavotti, J. Stat. Phys. 119, 909 (2014) CrossRefGoogle Scholar
  28. 28.
    R.H. Kraichnan, Physica A 279, 30 (2000) CrossRefGoogle Scholar
  29. 29.
    F. Zamponi, J. Stat. Mech. 2, 1 (2007) Google Scholar
  30. 30.
    C. Paneni, D.J. Searles, L. Rondoni, J. Chem. Phys. 128, 164515 (2008) CrossRefGoogle Scholar
  31. 31.
    P. Chantrenne, J.-L. Barrat, J. Heat Transfer 126, 577 (2004) CrossRefGoogle Scholar
  32. 32.
    C. Bustamante, J. Liphardt, F. Ritort, Phys. Today 58, 43 (2005) CrossRefGoogle Scholar
  33. 33.
    J. Casas-Vazquez, D. Jou, Rep. Prog. Phys. 66, 1937 (2003) CrossRefGoogle Scholar
  34. 34.
    J.G. Powles, G. Rickayzen, D.M. Heyes, Mol. Phys. 103, 1361 (2005) CrossRefGoogle Scholar
  35. 35.
    M. Criado-Sancho, D. Jou, J. Casas-Vazquez, Phys. Lett. A 350, 339 (2006) CrossRefGoogle Scholar
  36. 36.
    D. Jou, M. Criado-Sancho, J. Casas-Vazquez, Physica A 358, 49 (2005) CrossRefGoogle Scholar
  37. 37.
    D. Jou, J.E. Llebot, J. Casas-Vazquez, Phys. Rev. A 25, 508 (1982) CrossRefGoogle Scholar
  38. 38.
    D. Jou, T. Careta, J. Phys. A: Math. Gen. 15, 3195 (1982) CrossRefGoogle Scholar
  39. 39.
    B.N. Miller, P.M. Larson, Phys. Rev. A 20, 1717 (1979) CrossRefGoogle Scholar
  40. 40.
    Y. Dong, B.-Y. Cao, Z.-Y. Guo, Phys. Rev. E 87, 031120 (2013) Google Scholar
  41. 41.
    E. Bertin, K. Martens, O. Dauchot, M. Droz, Phys. Rev. E 75, 031120 (2007) MathSciNetCrossRefGoogle Scholar
  42. 42.
    H.-D. Kim, Phys. Rev. E 71, 041203 (2005) CrossRefGoogle Scholar
  43. 43.
    N. Jackson, J.M. Rubi, F. Bresme, Mol. Simul. 42, 1214 (2016) CrossRefGoogle Scholar
  44. 44.
    C. Kittel, Introduction to Solid State Physics (John Wiley and Sons, Inc., New York, 2005), pp. 105–130 Google Scholar

Copyright information

© EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Physics Department, Kazan Federal UniversityKazanRussia

Personalised recommendations