Advertisement

Molecular velocity auto-correlation of simple liquids observed by NMR MGSE method

  • Janez StepišnikEmail author
  • Carlos Mattea
  • Siegfried Stapf
  • Aleš Mohorič
Open Access
Regular Article
  • 117 Downloads

Abstract

The velocity auto-correlation spectra of simple liquids obtained by the NMR method of modulated gradient spin echo show features in the low frequency range up to a few kHz, which can be explained reasonably well by a t−3∕2 long-time tail decay only for non-polar liquid toluene, while the spectra of polar liquids, such as ethanol, water and glycerol, are more congruent with the model of diffusion of particles temporarily trapped in potential wells created by their neighbors. As the method provides the spectrum averaged over ensemble of particle trajectories, the initial non-exponential decay of spin echoes is attributed to a spatial heterogeneity of molecular motion in a bulk of liquid, reflected in distribution of the echo decays for short spin trajectories. While at longer time intervals, and thus with longer trajectories, heterogeneity is averaged out, giving rise to a spectrum which is explained as a combination of molecular self-diffusion and eddy diffusion within the vortexes of hydrodynamic fluctuations.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    L.D. Landau, E.M. Lifshitz, J. Exp. Theor. Phys. 32, 618 (1957) Google Scholar
  2. 2.
    V. Vladimirsky, J. Terletzky, J. Exp. Theor. Phys. 15, 258 (1945) Google Scholar
  3. 3.
    M.S. Giterman, M.E. Gertsenshtein, J. Exp. Theor. Phys. 23, 723 (1966) ADSGoogle Scholar
  4. 4.
    L. Landau, E. Lifshitz, in Fluid Mechanics, A Course of Theoretical Physics (Pergamon Press, Oxford, 1959), Vol. 6 Google Scholar
  5. 5.
    B. Alder, T. Wainwright, Phys. Rev. Lett. 18, 988 (1967) ADSCrossRefGoogle Scholar
  6. 6.
    B. Alder, T. Wainwright, Phys. Rev. A 1, 18 (1970) ADSCrossRefGoogle Scholar
  7. 7.
    M. Sakamoto, J. Phys. Soc. Jpn. 19, 1862 (1964) ADSCrossRefGoogle Scholar
  8. 8.
    K.F. Larsson, Phys. Rev. 167, 171 (1968) ADSCrossRefGoogle Scholar
  9. 9.
    V. Ardente, G. Nardelli, L. Reatto, Phys. Rev. 148, 124 (1966) ADSCrossRefGoogle Scholar
  10. 10.
    G. Maret, P. Wolf, Z. Phys. B 65, 409 (1987) ADSCrossRefGoogle Scholar
  11. 11.
    J.P. Boon, S. Yip, Molecular hydrodynamics (Dover Publications, Incorporated, New York, 2013) Google Scholar
  12. 12.
    J. Boon, A. Bouller, Phys. Lett. A 55, 391 (1976) ADSCrossRefGoogle Scholar
  13. 13.
    G.L. Paul, P.N. Pusey, J. Phys. A: Math. Gen. 14, 3301 (1981) ADSCrossRefGoogle Scholar
  14. 14.
    W. van Megen, Phys. Rev. E 73, 011401 (2006) ADSCrossRefGoogle Scholar
  15. 15.
    W.K. Kegel, A. van Blaaderen, Science 287, 290 (2000) ADSCrossRefGoogle Scholar
  16. 16.
    J.R. Dorfman, E.G.D. Cohen, Phys. Rev. A 12, 292 (1975) ADSCrossRefGoogle Scholar
  17. 17.
    D. Levesque, L. Verlet, Phys. Rev. A 2, 2514 (1970) ADSCrossRefGoogle Scholar
  18. 18.
    D. Levesque, T. Ashurst, Phys. Rev. Lett. 33, 277 (1974) ADSCrossRefGoogle Scholar
  19. 19.
    J. Marro, J. Masoliver, Phys. Rev. Lett. 54, 731 (1984) ADSCrossRefGoogle Scholar
  20. 20.
    A. Rahman, Phys. Rev. 136, A405 (1964) ADSCrossRefGoogle Scholar
  21. 21.
    C.D. Andriesse, Physica 48, 61 (1970) ADSCrossRefGoogle Scholar
  22. 22.
    K. Carneiro, Phys. Rev. A 14, 517 (1976) ADSCrossRefGoogle Scholar
  23. 23.
    C. Morkel, C. Gronemeyer, W. Glaser, J. Bosse, Phys. Rev. Lett. 58, 1873 (1987) ADSCrossRefGoogle Scholar
  24. 24.
    H.L. Peng, H.R. Schober, T. Voigtmann, Phys. Rev. E 94, 060601(R) (2016) ADSCrossRefGoogle Scholar
  25. 25.
    C. Vega, J.L.F. Abascal, Phys. Chem. Chem. Phys. 13, 19663 (2011) CrossRefGoogle Scholar
  26. 26.
    R.E. Ryitsev, N.M. Chtchelkatchev, J. Chem. Phys. 141, 124509 (2014) ADSCrossRefGoogle Scholar
  27. 27.
    A. McDonough, S.P. Russo, I.K. Snook, Phys. Rev. E 63, 026109 (2011) ADSCrossRefGoogle Scholar
  28. 28.
    R.F.A. Dib, F. Ould-Kaddour, Phys. Rev. E 74, 011202 (2006) ADSCrossRefGoogle Scholar
  29. 29.
    S. Bellissima, M. Neumann, E. Guarini, U. Bale, F. Barocchi, Phys. Rev. E 92, 042166 (2015) ADSCrossRefGoogle Scholar
  30. 30.
    J. Stepišnik, A. Mohorič, C. Matea, S. Stapf, I. Serša, Europhys. Lett. 106, 27007 (2014) ADSCrossRefGoogle Scholar
  31. 31.
    S. Lasič, J. Stepišnik, A. Mohorič, I. Serša, G. Planinšič, Europhys. Lett. 75, 887 (2006) ADSCrossRefGoogle Scholar
  32. 32.
    J. Stepišnik, P. Callaghan, Physica B 292, 296 (2000) ADSCrossRefGoogle Scholar
  33. 33.
    P.T. Callaghan, S.L. Codd, Phys. Fluids 13, 421 (2001) ADSCrossRefGoogle Scholar
  34. 34.
    D. Topgaard, C. Malmborg, O. Soederman, J. Mag. Res. 156, 195 (2002) ADSCrossRefGoogle Scholar
  35. 35.
    E.C. Parsons, M.D. Does, J.C. Gore, Magn. Reson. Imaging 21, 279 (2003) CrossRefGoogle Scholar
  36. 36.
    R. Mills, J. Phys. Chem. 77, 685 (1973) CrossRefGoogle Scholar
  37. 37.
    E.L. Hahn, Phys. Rev. 80, 580 (1950) ADSCrossRefGoogle Scholar
  38. 38.
    H.Y. Carr, E.M. Purcell, Phys. Rev. 94, 630 (1954) ADSCrossRefGoogle Scholar
  39. 39.
    H.C. Torrey, Phys. Rev. 104, 563 (1956) ADSCrossRefGoogle Scholar
  40. 40.
    E.O. Stejskal, J. Chem. Phys. 43, 3597 (1965) ADSCrossRefGoogle Scholar
  41. 41.
    N. Galamba, J. Phys.: Condens. Matter 29, 015101 (2017) ADSGoogle Scholar
  42. 42.
    F. Mallamace, M. Broccio, C. Corsaro, A. Faraone, L. Liu, C.Y. Mou, S.H. Chen, J. Phys.: Condens. Matter 18, S22852297 (2006) Google Scholar
  43. 43.
    R. Lamanna, M. Delmelle, S. Cannistraro, Phys. Rev. E 49, 2841 (1994) ADSCrossRefGoogle Scholar
  44. 44.
    A. Chandra, S. Chowdhuri, Proc. Indian Acad. Sci. 113, 591 (2001) CrossRefGoogle Scholar
  45. 45.
    M. Mahoney, W. Jorgensen, J. Chem. Phys. 114, 363 (2001) ADSCrossRefGoogle Scholar
  46. 46.
    K. Krynicki, C.D. Green, D.W. Sawyer, Faraday Discuss. Chem. Soc. 66, 199 (1978) CrossRefGoogle Scholar
  47. 47.
    K. Yoshida, C. Waka, N. Matubayasi, M. Nakahara, J. Chem. Phys. 123, 164506 (2005) ADSCrossRefGoogle Scholar
  48. 48.
    A. Einstein, Ann. Phys. 322, 891 (1905) CrossRefGoogle Scholar
  49. 49.
    R. Kubo, Rep. Prog. Phys. 29, 255 (1966) ADSCrossRefGoogle Scholar
  50. 50.
    W.M. Visscher, Phys. Rev. A 7, 1439 (1973) ADSCrossRefGoogle Scholar
  51. 51.
    V. Lisy, J. Tothova, J. Mol. Liq. 234, 182 (2017) CrossRefGoogle Scholar
  52. 52.
    J. Stepišnik Physica B 104, 350 (1981) CrossRefGoogle Scholar
  53. 53.
    J. Stepišnik, Prog. Nucl. Magn. Reson. Spectrosc. 17, 187 (1985) CrossRefGoogle Scholar
  54. 54.
    P. Callaghan, J. Stepišnik, J. Magn. Reson. A 117, 118 (1995) ADSCrossRefGoogle Scholar
  55. 55.
    P. Callaghan, J. Stepišnik, Generalised analysis of motion using magnetic field gradients, in Advances in Magnetic and Optical Resonance, edited by W.S. Warren (Academic Press, Inc, San Diego, 1996), Vol. 19, pp. 326–389 Google Scholar
  56. 56.
    M. Aggarwal, M. Jones, P. Calabresi, S. Mori, J. Zhang, Magn. Reson. Med. 67, 98 (2012) CrossRefGoogle Scholar
  57. 57.
    J. Stepišnik, I. Ardelean, J. Magn. Reson. 272, 100 (2016) ADSCrossRefGoogle Scholar
  58. 58.
    S. Meiboom, D. Gill, Rev. Sci. Inst. 29, 688 (1958) ADSCrossRefGoogle Scholar
  59. 59.
    J. Kowalewski, L. Maler, Nuclear spin relaxation in liquids: theory, experiments, and applications, Series in chemical physics (Taylor and Francis Group, Suite, FL, 2006) Google Scholar
  60. 60.
    R.P. Feynman, Phys. Rev. 84, 109 (1951) ADSCrossRefGoogle Scholar
  61. 61.
    F. Dyson, Phys. Rev. 75, 486 (1949) ADSCrossRefGoogle Scholar
  62. 62.
    A. Mohorič, J. Stepišnik, Prog. Nucl. Magn. Reson. Spectrosc. 54, 166 (2009) CrossRefGoogle Scholar
  63. 63.
    J. Stepišnik, Europhys. Lett. 60, 453 (2002) ADSCrossRefGoogle Scholar
  64. 64.
    B. Bluemich, F. Casanova, S. Appelt, Chem. Phys. Lett. 477, 231 (2009) ADSCrossRefGoogle Scholar
  65. 65.
    S.F. Swallen, P.A. Bonvallet, R.J. McMahon, M.D. Ediger, Phys. Rev. Lett. 90, 015901 (2003) ADSCrossRefGoogle Scholar
  66. 66.
    P. Mazur, G. van der Zwan, Physica A 92, 483 (1978) ADSCrossRefGoogle Scholar
  67. 67.
    D.C. Douglass, J. Chem. Phys. 35, 81 (1961) ADSMathSciNetCrossRefGoogle Scholar
  68. 68.
    S. Pickup, F. Blum, Macromolecules 22, 3961 (1989) ADSCrossRefGoogle Scholar
  69. 69.
    S. Meckl, M. Zeidler, Mol. Phys. 63, 85 (1988) ADSCrossRefGoogle Scholar
  70. 70.
    G. D’Errico, O. Ortona, F. Capuano, V. Vitagliano, J. Chem. Eng. Data 49, 1665 (2004) CrossRefGoogle Scholar
  71. 71.
    D.I. Graham, Int. J. Multiphase Flow 27, 1065 (2001) CrossRefGoogle Scholar
  72. 72.
    W. Magnus, Commun. Pure Appl. Math. 7, 649 (1954) CrossRefGoogle Scholar
  73. 73.
    M.D. Hurlimann, J. Mag. Res. 148, 367 (2001) ADSCrossRefGoogle Scholar
  74. 74.
    Y.Q. Song, J. Magn. Reson. 157, 82 (2002) ADSCrossRefGoogle Scholar
  75. 75.
    E. Toumelin, C. Torres-Verdın, B. Sun, K. Dunn, J. Mag. Res. 188, 83 (2007) ADSCrossRefGoogle Scholar
  76. 76.
    I. Serša, F. Bajd, A. Mohorič, J. Mag. Res. 270, 77 (2016) ADSCrossRefGoogle Scholar
  77. 77.
    E.O. Stejskal, J.E. Tanner, J. Chem. Phys. 42, 288 (1965) ADSCrossRefGoogle Scholar
  78. 78.
    W. Heisenberg, Z. Phys. 43, 172 (1927) ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Open AccessThis is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://doi.org/creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  • Janez Stepišnik
    • 1
    Email author
  • Carlos Mattea
    • 2
  • Siegfried Stapf
    • 2
  • Aleš Mohorič
    • 1
    • 3
  1. 1.Faculty of Mathematics and Physics, University of LjubljanaLjubljanaSlovenia
  2. 2.Ilmenau University of TechnologyIlmenauGermany
  3. 3.Josef Stefan InstituteLjubljanaSlovenia

Personalised recommendations