Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Variations on the “exact factorization” theme

  • 149 Accesses

  • 3 Citations

Abstract

In a series of publications, Hardy Gross and co-workers have highlighted the interest of an “exact factorization” approach to the interacting electron-nuclei problem, be it time-independent or time-dependent. In this approach, an effective potential governs the dynamics of the nuclei such that the resulting N-body nuclear density is in principle exact. This contrasts with the more usual adiabatic approach, where the effective potential leads to an approximate nuclear density. Inspired by discussions with Hardy, we explore the factorization idea for arbitrary many-body Hamiltonians, generalizing the electron-nuclei case, with a focus on the static case. While the exact equations do not lead to any practical advantage, they are illuminating, and may therefore constitute a suitable starting point for approximations. In particular, we find that unitary transformations that diagonalize the coupling term for one of the sub-systems make exact factorization appealing. The algorithms by which the equations for the separate subsystems can be solved in the time-independent case are also explored. We illustrate our discussions using the two-site Holstein model and the quantum Rabi model. Two factorization schemes are possible: one where the boson field feels a potential determined by the electrons, and the reverse exact factorization, where the electrons feel a potential determined by the bosons; both are explored in this work. A comparison with a self-energy approach is also presented.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    A. Fetter, J. Walecka,Quantum Theory of Many-Particle Systems (McGraw-Hill, New York, 2000)

  2. 2.

    G.D. Mahan,Many-Particle Physics (Kluwer, New York, 2000)

  3. 3.

    R. Martin, L. Reining, D. Ceperley,Interacting Electrons: Theory and Computational Approaches (Cambrige University Press, Cambridge, 2016)

  4. 4.

    M. Di Ventra, Non-equilibrium Green’s function formalism, inElectrical Transport in Nanoscale Systems (Cambrige University Press, 2008), p. 209

  5. 5.

    G. Kotliar, S. Savrasov, K. Haule, V. Oudovenko, O. Parcollet, C. Marianetti, Rev. Mod. Phys. 78, 865 (2006)

  6. 6.

    T. Azumi, K. Matsuzaki, Photochem. Photobiol. 25, 315 (1977)

  7. 7.

    R. Martin,Electronic Structure: Basic Theory and Practical Methods (Cambridge University Press, Cambridge, U.K., 2008)

  8. 8.

    M. Born, K. Huang,The Dynamical Theory of Crystal Lattices (Oxford University Press, London, 1954)

  9. 9.

    G. Hunter, Int. J. Quantum Chem. 9, 237 (1975)

  10. 10.

    N.I. Gidopoulos, E. Gross, https://doi.org/arXiv:cond-mat/0502433 [cond-mat.mtrl-sci] (2005)

  11. 11.

    N.I. Gidopoulos, E.K.U. Gross, Phil. Trans. R. Soc. 372, 0059 (2014)

  12. 12.

    A. Abedi, N.T. Maitra, E.K.U. Gross, Phys. Rev. Lett. 105, 123002 (2010)

  13. 13.

    A. Abedi, N.T. Maitra, E.K.U. Gross, J. Chem. Phys. 137, 22A530 (2012)

  14. 14.

    M.V. Berry, Proc. R. Soc. Lond. A 392, 45 (1984)

  15. 15.

    Y. Suzuki, A. Abedi, N.T. Maitra, K. Yamashita, E.K.U. Gross, Phys. Rev. A 89, 040501 (2014)

  16. 16.

    L.S. Cederbaum, Chem. Phys. 457, 129 (2015)

  17. 17.

    G. Hunter, Int. J. Quant. Chem. 29, 197 (1986)

  18. 18.

    A. Schild, E.K.U. Gross, Phys. Rev. Lett. 118, 163202 (2017)

  19. 19.

    D. Bohm, Phys. Rev. 85, 166 (1952)

  20. 20.

    A. Abedi, F. Agostini, E.K.U. Gross, Europhys. Lett. 106, 33001 (2014)

  21. 21.

    F. Agostini, A. Abedi, E. Gross, J. Chem. Phys. 141, 214101 (2014)

  22. 22.

    S.K. Min, F. Agostini, E.K.U. Gross, Phys. Rev. Lett. 115, 073001 (2015)

  23. 23.

    F. Agostini, S.K. Min, A. Abedi, E.K.U. Gross, J. Chem. Theory Comput. 12, 2127 (2016)

  24. 24.

    S.K. Min, F. Agostini, I. Tavernelli, E.K.U. Gross, J. Phys. Chem. Lett. 8, 3048 (2017)

  25. 25.

    R. Requist, E.K.U. Gross, Phys. Rev. Lett. 117, 193001 (2016)

  26. 26.

    R. Requist, C.R. Proetto, E.K.U. Gross, Phys. Rev. A 96, 062503 (2017)

  27. 27.

    J. Tully, J. Chem. Phys. 93, 1061 (1990)

  28. 28.

    G. Granucci, M. Persico, J. Chem. Phys. 126, 134114 (2007)

  29. 29.

    P. Ehrenfest, Z. Phys. 45, 455 (1927)

  30. 30.

    E. Khosravi, A. Abedi, N.T. Maitra, Phys. Rev. Lett. 115, 263002 (2015)

  31. 31.

    E. Khosravi, A. Abedi, A. Rubio, N.T. Maitra, Phys. Chem. Chem. Phys. 19, 8269 (2017)

  32. 32.

    Y. Suzuki, A. Abedi, N.T. Maitra, E.K.U. Gross, Phys. Chem. Chem. Phys. 17, 29271 (2015)

  33. 33.

    T. Fiedlschuster, J. Handt, E.K.U. Gross, R. Schmidt, Phys. Rev. A 95, 063424 (2017)

  34. 34.

    G. Albareda, A. Abedi, I. Tavernelli, A. Rubio, Phys. Rev. A 94, 062511 (2016)

  35. 35.

    T. Holstein, Ann. Phys. 8, 325 (1959)

  36. 36.

    T. Holstein, Ann. Phys. 8, 343 (1959)

  37. 37.

    R.L. Fulton, M. Gouterman, J. Chem. Phys. 35, 1059 (1961)

  38. 38.

    L. Zijing, H. Rongsheng, W. Kelin, Int. J. Mod. Phys. B 17, 4252 (2003)

  39. 39.

    L.K. McKemmish, R.H. McKenzie, N.S. Hush, J.R. Reimers, J. Chem. Phys. 135, 244110 (2011)

  40. 40.

    D. Braak, Phys. Rev. Lett. 107, 100401 (2011)

  41. 41.

    I.B. Bersuker, Chem. Rev. 113, 1351 (2013)

  42. 42.

    N. Säkkinen, Y. Peng, H. Appel, R. van Leeuwen, J. Chem. Phys. 143, 234101 (2015)

  43. 43.

    E.R.J. Vandaele, A. Arvanitidis, A. Ceulemans, J. Phys. A: Math. Theor. 50, 114002 (2017)

  44. 44.

    H. van der Vorst,Iterative Krylov Methods for Large Linear Systems (Cambridge University Press, Cambridge, 2009)

  45. 45.

    M.R. Hestenes, E. Stiefel, J. Res. Nat. Bur. Stand. 49, 409 (1952)

  46. 46.

    W. Press, B. Flannery, S. Teukolsky, W. Vetterling,Numerical Recipes: The Art of Scientific Programming (Cambrige University Press, Cambridge, 1988)

  47. 47.

    M. Teter, M. Payne, D. Allan, Phys. Rev. B 40, 12255 (1989)

  48. 48.

    M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias, J.D. Joannopoulos, Rev. Mod. Phys. 64, 1045 (1992)

  49. 49.

    I.G. Lang, Y.A. Firsov, Sov. Phys. JETP 16, 1301 (1963)

  50. 50.

    D. Langreth, Phys. Rev. B 1, 471 (1970)

  51. 51.

    F. Agostini, A. Abedi, Y. Suzuki, S. Min, N. Maitra, E. Gross, J. Chem. Phys. 142, 084303 (2015)

Download references

Author information

Correspondence to Xavier Gonze.

Additional information

Contribution to the Topical Issue “Special issue in honor of Hardy Gross”, edited by C.A. Ullrich, F.M.S. Nogueira, A. Rubio, and M.A.L. Marques.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gonze, X., Zhou, J.S. & Reining, L. Variations on the “exact factorization” theme. Eur. Phys. J. B 91, 224 (2018). https://doi.org/10.1140/epjb/e2018-90278-2

Download citation