Advertisement

Effects of phonon scattering on the electron transport and photocurrent of graphene quantum dot structures

  • Mahvash Arabi Darehdor
  • Mahmood Rezaee RoknabadiEmail author
  • Nasser Shahtahmassebi
Regular Article
  • 42 Downloads

Abstract

The nonequilibrium Green’s function (NEGF) on the basis of unitary transformation is used to study the effects of phonon scattering on the electron transport and photocurrent of rectangular Armchair graphene quantum dots (GQD) in different lengths and widths. Applying the Landauer–Buttiker formalism, the electron current and photocurrent is calculated. The noninteracting Hamiltonian is interpreted as nearest neighbor tight-binding model, and electron–phonon interaction contribution to the earlier Hamiltonian is written using the Holstein model. The obtained results show that electron–phonon coupling has three major effects: (i) phonon-assisted and phonon-restricted effect on the electron transport and photocurrent, (ii) increasing the band gap in the absence of photon radiation, and (iii) increasing and decreasing the band gap in the presence of photon radiation.

Graphical abstract

Keywords

Computational Methods 

References

  1. 1.
    A.K. Geim, K.S. Novoselov, The Nobel Prize in Physics 2010 Google Scholar
  2. 2.
    A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007) ADSCrossRefGoogle Scholar
  3. 3.
    A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009) ADSCrossRefGoogle Scholar
  4. 4.
    C. Lee, X. Wei, J.W. Kysar, J. Hone, Science 321, 385 (2008) ADSCrossRefGoogle Scholar
  5. 5.
    S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H.R. Kim, Y.I. Song, Y.-J. Kim, K.S. Kim, B. Özyilmaz, J.-H. Ahn, B.H. Hong, S. Iijima, Nat. Nanotechnol. 5, 574 (2010) ADSCrossRefGoogle Scholar
  6. 6.
    V. Barone, O. Hod, G.E. Scuseria, Nano Lett. 6, 2748 (2006) ADSCrossRefGoogle Scholar
  7. 7.
    D.A. Areshkin, D. Gunlycke, C.T. White, Nano Lett. 7, 204 (2007) ADSCrossRefGoogle Scholar
  8. 8.
    J. Fernandez-Rossier, J.J. Palacios, Phys. Rev. Lett. 99, 177204 (2007) ADSCrossRefGoogle Scholar
  9. 9.
    H. Tetsuka, A. Nagoya, S.I. Tamura, Nanoscale 8, 19677 (2016) CrossRefGoogle Scholar
  10. 10.
    N.D. Akhavan, G. Jolley, G.A. Umana-Membreno, J. Antoszewski, L. Faraone, J. Appl. Phys. 112, 094505 (2012) ADSCrossRefGoogle Scholar
  11. 11.
    Y. Yoon, D.E. Nikonov, S. Salahuddin, Appl. Phys. Lett. 98, 203503 (2011) ADSCrossRefGoogle Scholar
  12. 12.
    Q. Gao, J. Guo, J. Appl. Phys. 112, 84316 (2012) CrossRefGoogle Scholar
  13. 13.
    M.A.J. Guo, A.Y. Yoon, Appl. Phys. Lett. 88, 133111 (2006) ADSCrossRefGoogle Scholar
  14. 14.
    Z.Z. Zhang, K. Chang, F.M. Peeters, Phys. Rev. B 77, 235411 (2008) ADSCrossRefGoogle Scholar
  15. 15.
    Z.Z. Zhang, K. Chang, K.S. Chan, Appl. Phys. Lett. 93, 062106 (2008) ADSCrossRefGoogle Scholar
  16. 16.
    A.H.C. Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009) ADSCrossRefGoogle Scholar
  17. 17.
    M. Modarresi, A.D. Gl, Phys. Rev. B 95, 235103 (2017) ADSCrossRefGoogle Scholar
  18. 18.
    M. Modarresi, M. Roknabadi, N. Shahtahmasbi, Physica E 43, 1751 (2011) ADSCrossRefGoogle Scholar
  19. 19.
    M. Wimmer, Ph.D. thesis, Universitätsverlag Regensburg, 2009 Google Scholar
  20. 20.
    S.K. Maiti. Org. Electron. 8, 575 (2007) CrossRefGoogle Scholar
  21. 21.
    S.K. Maiti, Solid State Commun. 149, 973 (2009) ADSCrossRefGoogle Scholar
  22. 22.
    S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, UK, 1997) Google Scholar
  23. 23.
    S. Datta, Quantum Transport: Atom to Transistor (Cambridge University Press, Cambridge, 2005) Google Scholar
  24. 24.
    A. Ferretti, A. Calzolari, R. Di Felice, F. Manghi, Phys. Rev. B 72, 125114 (2005) ADSCrossRefGoogle Scholar
  25. 25.
    P.H. Tan, W.P. Han, W.J. Zhao, Z.H. Wu, K. Chang, H. Wang, Y.F. Wang et al., Nat. Mater. 11, 294 (2012) ADSCrossRefGoogle Scholar
  26. 26.
    C.H. Lui, L.M. Malard, S.H. Kim, G. Lantz, F.E. Laverge, R. Saito, T.F. Heinz, Nano Lett. 12, 5539 (2012) ADSCrossRefGoogle Scholar
  27. 27.
    H. Karamitaheri, M. Pourfath, H. Kosina, N. Neophytou, Phys. Rev. B 91, 165410 (2015) ADSCrossRefGoogle Scholar
  28. 28.
    I. Lang, Y.A. Firsov, J. Exp. Theor. Phys. 16, 1301 (1963) ADSGoogle Scholar
  29. 29.
    F. Marsiglio, Physica C 244, 21 (1995) ADSCrossRefGoogle Scholar
  30. 30.
    L.E. Henrickson, J. Appl. Phys. 91, 6273 (2002) ADSCrossRefGoogle Scholar
  31. 31.
    U. Aeberhard, Phys. Rev. B 84, 035454 (2011) ADSCrossRefGoogle Scholar
  32. 32.
    D.A. Ryndyk, Theory of Quantum Transport at Nanoscale, Springer Series in Solid-State Sciences (Springer, Berlin, 2016) Google Scholar
  33. 33.
    H. Şahin, R.T. Senger, S. Ciraci, J. Appl. Phys. 108, 074301 (2010) ADSCrossRefGoogle Scholar
  34. 34.
    Z.Z. Zhang, K. Chang, F.M. Peeters, Phys. Rev. B 77, 235411 (2008) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Mahvash Arabi Darehdor
    • 1
  • Mahmood Rezaee Roknabadi
    • 1
    Email author
  • Nasser Shahtahmassebi
    • 1
  1. 1.Department of Physics and Nanocentre ResearchFerdowsi University of MashhadMashhadIran

Personalised recommendations