Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Quantum optical oscillations of the Fermi level in a graphene-based Schottky junction

Abstract

The strong movility of charge carriers in graphene allows the introduction of high doping concentration in this material and, this way, the Fermi level can be tunned over a large range of energies. The above situation acquires a complex character in presence of strong electron–photon interaction that induces new quantum phases. In this context, this work describes the possible quantum oscillatory behavior of the Fermi level for a graphene-silicon Schottky junction under circular polarized radiation in the terahertz regime. The reported quantum optical oscillations of the Fermi level are related to intraband optical transitions of intrinsic photon-dressed electrons in the graphene sheet, which promote shiftings of the spectral singularities in the density of states (DOS). In addition, the oscillatory effect is strongly accented in the number of oscillations and modulation by the induction of electrons from the semiconductor to the graphene sheet via a gate potential.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    A.H.C. Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)

  2. 2.

    S.-Rodriguez et al., Nat. Commun. 3, 780 (2012)

  3. 3.

    H. Choi et al., Sci. Rep. 7, 42833 (2017)

  4. 4.

    X.-J. He et al., J. Appl. Phys. 115, 17B903 (2014)

  5. 5.

    J. Ding et al., Sci. Rep. 4, 6128 (2014)

  6. 6.

    L. Wu et al., Small 12, 2616 (2016)

  7. 7.

    G. Deng, T. Xia, J. Yang, Z. Yin, J. Electromagn. Waves Appl. 31 381 (2017)

  8. 8.

    G. Liang et al., ACS Photonics 2, 1559 (2015)

  9. 9.

    Q. Li et al., Nat. Commun. 6, 7082 (2015)

  10. 10.

    Q.-Y. Wen et al., Sci. Rep. 4, 7409 (2014)

  11. 11.

    P. Weis, J. Garcia-Pomar, M. Höh, B. Reinhard, A. Brodyanski, M. Rahm, ACS Nano 6, 9118 (2012)

  12. 12.

    M. Fu et al., Opt. Mater. 66, 381 (2017)

  13. 13.

    H. Dalir, Y. Xia, Y. Wang, X. Zhang, ACS Photonics 3, 1564 (2016)

  14. 14.

    A.D. Bartolomeo, G. Luongo, F. Giubileo, N. Funicello, G. Niu, T. Schroeder, M. Lisker, G. Lupina, 2D Mater. 4, 025075 (2017)

  15. 15.

    T. Oka, H. Aoki, Phys. Rev. B , 79, 081406(R) (2009)

  16. 16.

    O. Kibis, Phys. Rev. B 81, 165433 (2010)

  17. 17.

    H. Aoki, M. Dresselhaus (Eds.), Physics of graphene, (Springer International Publishing, Switzerland, 2014)

  18. 18.

    D. Sinha, J.U. Lee, Nano Lett. 14, 4660 (2014)

  19. 19.

    X. An, F. Liu, Y.J. Jung, S. Kar, Nano Lett. 13, 909 (2013)

  20. 20.

    X. Wang, Z. Cheng, K. Xu, H.K. Tsang, J.-B. Xu, Nat. Photonics 7, 888 (2013)

  21. 21.

    R. Vega-Monroy, C. Mera-Acosta, Phys. Rev. B 85, 235442 (2012)

  22. 22.

    O. Roslyak, G. Gumbs, S. Mukamel, J. Chem. Phys. 136, 194106 (2012)

  23. 23.

    A. Iurov, G. Gumbs, O. Roslyak, D. Huang, J. Phys.: Condens. Matter 24, 015303 (2012)

  24. 24.

    R. Vega-Monroy, Physica E 63, 134 (2014)

  25. 25.

    G. Mahan,Many-particle physics, 2nd edn. (Plenum Press, New York, 1990)

  26. 26.

    L. Landau, E. Lifshits, Statistical mechanics I, 3rd edn. (Pergamon Press, UK, 1980)

  27. 27.

    S.J. Liang, W. Hu, A. Di-Bartolomeo, S. Adam, L.K. Ang, A modified schottky model for graphene-semiconductor (3d/2d) contact: a combined theoretical and experimental study, in 2016IEEE International Electron Devices Meeting (IEDM), 2016, pp. 14.4.1–14.4.4

  28. 28.

    Y.S. Ang, S.J. Liang, L.K. Ang, MRS Bull. 42, 505 (2017)

  29. 29.

    X. Wan et al., npj 2D Mater. Appl. 1, 4 (2017)

Download references

Author information

Correspondence to Ricardo Vega Monroy.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vega Monroy, R., Arrieta Carbonó, K. Quantum optical oscillations of the Fermi level in a graphene-based Schottky junction. Eur. Phys. J. B 91, 232 (2018). https://doi.org/10.1140/epjb/e2018-90244-0

Download citation

Keywords

  • Solid State and Materials