Advertisement

Ethanol chemisorption on core–shell Pt-nanoparticles: an ab initio study

  • Vagner A. RigoEmail author
  • Caetano R. Miranda
  • Francesca Baletto
Regular Article
  • 63 Downloads
Part of the following topical collections:
  1. Topical issue: Shaping Nanocatalysts

Abstract

By means of ab initio calculations, we have investigated the chemisorption properties of ethanol onto segregating binary nanoalloys (NAs). We select nanostructures with icosahedral shape of 55 atoms with a Pt outermost layer over an M-core with M = Ag, Pd, Ni. With respect to nanofilms with equivalent composition, there is an increase of the ethanol binding energy. This is not merely due to observed shortening of the Pt–O distance but depends on the nanoparticle distortion after ethanol adsorption. This geometrical distortion within the nanoparticle can be interpreted as a radial breathing, which is sensitive to the adsorption site, identified by the O-anchor point and the relative positions of the ethyl group. More interestingly, being core-dependent larger in Pd@Pt and smaller in Ni@Pt, it relates to an effective electron transfer from ethanol and the M-core towards the Pt-shell. On the view of this new analysis, Pd@Pt NAs show the most promising features for ethanol oxidation.

Graphical abstract

References

  1. 1.
    L. An, T.S. Zhao, Y.S. Li, Sustain. Energy Rev. 50, 1462 (2015) CrossRefGoogle Scholar
  2. 2.
    S.P.S. Badwal, S. Giddey, A. Kulkarni, J. Geol, S. Basu, Appl. Energy 80, 80 (2015) CrossRefGoogle Scholar
  3. 3.
    J. Sun, Y. Wang, ACS Catal. 4, 1078 (2014) CrossRefGoogle Scholar
  4. 4.
    X.-W. Wu, N. Wu, C.-Q. Shi, Z.-Y. Zheng, H.-B. Qi, Y.-F. Wang, Appl. Sur. Sci. 338, 239 (2016) CrossRefGoogle Scholar
  5. 5.
    A. Verna, S. Basu, J. Power Sources 180, 174 (2007) Google Scholar
  6. 6.
    L. An, T.S. Zhao, X.L. Zhou, L. Wei, X.H. Yan, RSC Adv. 4, 65031 (2014) CrossRefGoogle Scholar
  7. 7.
    L. An, Z.H. Chai, L. Zeng, P. Tan, T.S. Zhao, Int. J. Hydrogen Energy 38, 14067 (2013) CrossRefGoogle Scholar
  8. 8.
    L. An, T.S. Zhao, Y. Li, Q. Wu, Energy Environ. Sci. 5, 7536 (2012) CrossRefGoogle Scholar
  9. 9.
    R.M. Antoniassi, L. Otubo, J.M. Vaz, A. Oliveira Neto, J. Catal. 342, 67 (2016) CrossRefGoogle Scholar
  10. 10.
    P. Tereshchuk, J.L.F. Da Silva, J. Phys. Chem. C 116, 24695 (2012) CrossRefGoogle Scholar
  11. 11.
    A. Kowal, M. Li, M. Shao, K. Sasaki, M.B. Vukmirovic, J. Zhang, N.S. Marinkovic, P. Liu, A.I. Frenkel, R.R. Adzic, Nat. Mater. 8, 325 (2009) CrossRefGoogle Scholar
  12. 12.
    P. Tereshchuk, J.L.F. Da Silva, J. Phys. Chem. C 117, 16942 (2013) CrossRefGoogle Scholar
  13. 13.
    C. Engelbrekt, N. Seselj, R. Poreddy, A. Riisager, J. Ulstrupa, J. Zhang, J. Mater. Chem. A 4, 3278 (2016) CrossRefGoogle Scholar
  14. 14.
    L. Chen, L. Lu, H. Zhu, Y. Chen, Y. Huang, Y. Li, L. Wang, Nat. Commun. 8, 14136 (2017) CrossRefGoogle Scholar
  15. 15.
    A.O. Pereira, C.R. Miranda, Appl. Sur. Sci. 288, 564 (2014) CrossRefGoogle Scholar
  16. 16.
    C.-L. Sun, J.-S. Tang, N. Brazeau, J.-J. Wu, S. Ntais, C.-W. Yin, H.-L. Chou, E.A. Baranova, Electrochim. Acta 162, 282 (2015) CrossRefGoogle Scholar
  17. 17.
    Y. Guan, E.J.M. Hensen, J. Phys. Chem. C 361, 49 (2009) Google Scholar
  18. 18.
    W. Du, G. Yang, E. Wong, N.A. Deskins, A.I. Frenkel, D. Su, X. Teng, J. Am. Chem. Soc. 136, 10862 (2014) CrossRefGoogle Scholar
  19. 19.
    J. Xie, Q. Zhang, L. Gu, S. Xu, P. Wang, J. Liu, Y. Ding, Y.F. Yao, C. Nan, M. Zhao, Y. You, Z. Zou, Nano Energy 21, 247 (2016) CrossRefGoogle Scholar
  20. 20.
    J. Perez, V.A. Paganin, E. Antolini, J. Electroanal. Chem. 654, 108 (2011) CrossRefGoogle Scholar
  21. 21.
    J.B.A. Davis, F. Baletto, R.L. Johnston, J. Phys. Chem. A 119, 9703 (2015) CrossRefGoogle Scholar
  22. 22.
    L. Zibordi-Besse, P. Tereshchuk, A.S. Chaves, J.L.F. Da Silva, J. Phys. Chem. A 120, 4231 (2016) CrossRefGoogle Scholar
  23. 23.
    M.G. Sandoval, R. Luna, G. Brizuela, A.O. Pereira, C.R. Miranda, P. Jasen, J. Phys. Chem. C 121, 8613 (2017) CrossRefGoogle Scholar
  24. 24.
    F. Baletto, R. Ferrando, Rev.  Mod. Phys. 77, 371 (2005) CrossRefGoogle Scholar
  25. 25.
    F. Baletto, R. Ferrando, A. Fortunelli, F. Montalenti, C. Mottet, J. Chem. Phys. 116, 3856 (2002) CrossRefGoogle Scholar
  26. 26.
    R. Ferrando, J. Jellinek, R.L. Johnston, Chem. Rev. 108, 845 (2008) CrossRefGoogle Scholar
  27. 27.
    P. Hohenberg, W. Kohn, Phys. Rev. B 136, 864 (1964) CrossRefGoogle Scholar
  28. 28.
    W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965) CrossRefGoogle Scholar
  29. 29.
    G. Kresse, J. Hafner, Phys. Rev. B 48, 13115 (1993) CrossRefGoogle Scholar
  30. 30.
    G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996) CrossRefGoogle Scholar
  31. 31.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) CrossRefGoogle Scholar
  32. 32.
    P.E. Blöchl, Phys. Rev. B 50, 17953 (1994) CrossRefGoogle Scholar
  33. 33.
    G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999) CrossRefGoogle Scholar
  34. 34.
    S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 132, 154104 (2010) CrossRefGoogle Scholar
  35. 35.
    W. Tang, E. Sanville, G. Henkelman, J. Phys. 21, 084204 (2009) Google Scholar
  36. 36.
    C. Di Paola, R. D’Agosta, F. Baletto, Nano Lett. 16, 2885 (2016) CrossRefGoogle Scholar
  37. 37.
    K.E.A. Batista, M.J. Piotrowski, A.S. Chaves, J.L.F. Da Silva, J. Chem. Phys. 144, 054310 (2016) CrossRefGoogle Scholar
  38. 38.
    J.L.F. Da Silva, H.G. Kim, M.J. Piotrowski, M.J. Prieto, G. Tremiliosi-Filho, Phys. Rev. B 82, 205424 (2010) CrossRefGoogle Scholar
  39. 39.
    M.J. Piotrowski, P. Piquini, J.L.F. da Silva, J. Phys. Chem. C 116, 18432 (2012) CrossRefGoogle Scholar
  40. 40.
    G.G. Asara, L.O. Paz-Borbón, F. Baletto, ACS Catal. 6, 4388 (2016) CrossRefGoogle Scholar
  41. 41.
    G. Papoian, J.K. Nørskov, R. Hoffmann, J. Am. Chem. Soc. 122, 4129 (2000) CrossRefGoogle Scholar
  42. 42.
    O. Skoplyak, M.A. Barteau, J.G. Chen, Surf. Sci. 602, 3578 (2008) CrossRefGoogle Scholar
  43. 43.
    R. Alcalá, M. Mavrikakis, J.A. Dumesic, J. Catal. 218, 178 (2003) CrossRefGoogle Scholar
  44. 44.
    P.D. Jadzinky, G. Calero, C.J. Ackerson, D.A. Bushnell, R.D. Kornberg, Science 318, 430 (2007) CrossRefGoogle Scholar
  45. 45.
    S.S. Batsanov, Neorganicheskie Mater. 9, 1031 (2009) Google Scholar
  46. 46.
    K.E.A. Batista, J.L.F. Da Silva, M. Piotrowski, J. Phys. Chem. C 122, 7444 (2018) CrossRefGoogle Scholar
  47. 47.
    E. Örücü, F. Gölaliler, A. Erhan Aksoylu, Z. Ilsen Önsan, Catal. Lett. 120, 198 (2008) CrossRefGoogle Scholar
  48. 48.
    Y.-J. Zhang, S.-B Li, S. Duan, B.-A. Lu, J. Yang, R. Panneerselvam, C.-Y. Li, P.-P. Fang, Z.-Y. Zhou, D.L. Phillips, J.-F. Li, Z.-Q. Tian, J. Phys. Chem. C 120, 20684 (2016) CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Vagner A. Rigo
    • 1
    Email author
  • Caetano R. Miranda
    • 2
  • Francesca Baletto
    • 3
  1. 1.Universidade Tecnológica Federal do Paraná (UTFPR)Cornélio ProcópioBrazil
  2. 2.Instituto de Física, Universidade de Sao Paulo (IF-USP)Sao PauloBrazil
  3. 3.King’s College, Physics Department, Strand WC2R 2LSLondonUK

Personalised recommendations