Advertisement

Enhanced thermoelectric properties of Bi2O2Se ceramics by Bi deficiencies

  • Tao Wei
  • Bin XuEmail author
  • Xinsheng Ji
Regular Article
  • 60 Downloads

Abstract

The electronic structure and the thermoelectric properties of Bi2−xO2Se (x = 0, 1/4, 1/8, 1/16, 1/32, 1/36, 1/54 and 1/64) are studied by the first principles and the semiclassical BoltzTraP theory. It is found that the energy band gaps increase with increasing x. The calculated total density of states (TDOS) near the Fermi level and bandwidth are influenced by the applied defect. The S values of Bi2−xO2Se are much larger than Bi2O2Se at the same n, due to the much larger TDOS of Bi2−xO2Se. στ of p-type Bi2−xO2Se are larger than that of the n-type ones, due to the larger TDOS on the top of the valence band (VB). κ0of p-type doping is higher than that of n-type doping. ZeT can be increased by Bi deficiency.

Graphical abstract

Keywords

Solid State and Materials 

References

  1. 1.
    J.R. Sootsman, D.Y. Chung, M.G. Kanatzidis, Angew. Chem. Int. Ed. 48, 8616 (2009) CrossRefGoogle Scholar
  2. 2.
    J.Q. He, M.G. Kanatzidis, V.P. Dravid, Mater. Today 16, 166 (2013) CrossRefGoogle Scholar
  3. 3.
    X.W. Wang, H. Lee, Y.C. Lan, G.H. Zhu, G. Joshi, D.Z. Wang, J. Yang, A.J. Muto, M.Y. Tang, J. Klatsky, S. Song, M.S. Dresselhaus, G. Chen, Z.F. Ren, Appl. Phys. Lett. 93, 193121 (2008) ADSCrossRefGoogle Scholar
  4. 4.
    Y. Wu, S.W. Finefrock, H. Yang, Nano Energy 1, 651 (2012) CrossRefGoogle Scholar
  5. 5.
    B.I. Ismail, W.H. Ahmed, Recent Patents Electr. Eng. 2, 27 (2009) CrossRefGoogle Scholar
  6. 6.
    T. Kajikawa, in 3rd Thermoelectrics Applications Workshop 2012, March 20 (2012) Google Scholar
  7. 7.
    Y.H. Lin, J.L. Lan, Z.J. Shen, Y.H. Liu, C.W. Nan, J.F. Li, Appl. Phys. Lett. 94, 072107 (2009) ADSCrossRefGoogle Scholar
  8. 8.
    J.L. Lan, Y.H. Lin, H. Fang, A. Mei, C.W. Nan, Y. Liu, S. Xu, M. Peters, J. Am. Ceram. Soc 93, 2121 (2010) CrossRefGoogle Scholar
  9. 9.
    J.L. Lan, Y.C. Liu, B. Zhan, Y.H. Lin, B. Zhang, X. Yuan, W. Zhang, W. Xu, C.W. Nan, Adv. Mater. 25, 5086 (2013) CrossRefGoogle Scholar
  10. 10.
    J.W. Fergus, J. Eur. Ceram. Soc. 32, 525 (2012) CrossRefGoogle Scholar
  11. 11.
    G. Ren, J. Lan, C. Zeng, Y. Liu, B. Zhan, S. Butt, Y.H. Lin, C.W. Nan, JOM 67, 211 (2015) ADSCrossRefGoogle Scholar
  12. 12.
    B. Zhan, Y. Liu, X. Tan, J.L. Lan, Y.H. Lin, C.W. Nan, J. Am. Ceram. Soc. 98, 2465 (2015) CrossRefGoogle Scholar
  13. 13.
    P. Ruleova, C. Drasar, P. Lostak, C.P. Li, S. Ballikaya, C. Uher, Mater. Chem. Phys. 119, 299 (2010) CrossRefGoogle Scholar
  14. 14.
    H. Boller, Monatsh. Chem. 104, 916 (1973) CrossRefGoogle Scholar
  15. 15.
    D. Guo, C. Hu, Y. Xi, K. Zhang, J. Phys, Chem. C 117, 21597 (2013) Google Scholar
  16. 16.
    T. Van Quang, H. Lim, M. Kim, J. Korean Phys. Soc. 61, 1728 (2012) CrossRefGoogle Scholar
  17. 17.
    B. Zhan, Y.C. Liu, X. Tan, J.L. Lan, Y.H. Lin, C.W. Nan, J. Am. Ceram. Soc. 98, 2465 (2015) CrossRefGoogle Scholar
  18. 18.
    P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, Comput. Phys. Commun. 59, 399 (1990) ADSCrossRefGoogle Scholar
  19. 19.
    P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) ADSCrossRefGoogle Scholar
  20. 20.
    P.B. Allen, in Quantum Theory of Real Materials, edited by J.R. Chelikowsky, S.G. Louie (Klüwer, Boston, 1996), p. 219 Google Scholar
  21. 21.
    T.J. Scheidemantel, C. Ambrosch-Drax, T. Thonhauser, J.V. Badding, J.O. Sofo, Phys. Rev. B 68, 125210 (2003) ADSCrossRefGoogle Scholar
  22. 22.
    A. Maignan, V. Eyert, C. Martin, S. Kremer, R. Frésard, D. Pelloquin, Phys. Rev. B 80, 115103 (2009) ADSCrossRefGoogle Scholar
  23. 23.
    G.K.H. Madsen, D.J. Singh, Comput. Phys. Commun. 175, 67 (2006) ADSCrossRefGoogle Scholar
  24. 24.
    A. Pfitzner, Z. Kristallogr. 209, 685 (1994) Google Scholar
  25. 25.
    P. Schmidt, O. Rademacher, H. Oppermann, S. Daebritz, Z. Anorg. Allg. Chem. 626, 1999 (2000) CrossRefGoogle Scholar
  26. 26.
    B. Zhan, Y. Liu, X. Tan, J.-L. Lan, Y.-H. Lin, C.-W. Nan, J. Am. Ceram. Soc. 98, 2465 (2015) CrossRefGoogle Scholar
  27. 27.
    M. Liangruksa, Comput. Mater. Sci. 120, 142 (2016) CrossRefGoogle Scholar
  28. 28.
    T.V. Quang, H. Lim, M. Kim, J. Korean Phys. Soc. 61, 1728 (2012) ADSCrossRefGoogle Scholar
  29. 29.
    D.L. Guo, C.G. Hu, Y. Xi, K.Y. Zhang, J. Phys. Chem. C 117, 21597 (2013) CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Henan University of Engineering, Computer CollegeZhengzhou HenanP.R. China
  2. 2.National Digital Switching System Engineering & Technological R&D CenterZhengzhou HenanP.R. China
  3. 3.North China University of Water Resources and Electric PowerZhengzhouP.R. China

Personalised recommendations