Theoretical study of methyl-ammonium lead iodide perovskite’s response under tensile/compressive loads

  • Saeed Momeni BashusqehEmail author
  • Esmaeil Zarezadeh
  • Javad Eshaghi
  • Kamran Farajzadeh
Regular Article


In the present work, we will utilize all atom-molecular dynamics simulations to study mechanical behavior of methyl-ammonium lead iodide (MAPbI3) perovskites when subjected to mechanical loads. Uniaxial tension and compression tests in X, Y and Z directions are simulated at ambient conditions. Plotting variations of stress components with the applied strain, the yield and ultimate strengths of MAPbI3 perovskite are obtained where Poisson’s ratios in all directions are computed directly from these simulations. Introducing a straightforward approach, all the stiffness matrix’s elements are computed. It is shown that compressive strength of MAPbI3 perovskite is much higher than its tensile counterpart which represents tension–compression asymmetry in MAPbI3 perovskites. Moreover, Mohr–Coulomb failure criterion is employed to describe failure of MAPbI3 perovskites. To validate applicability of Coulomb–Mohr criterion in describing failure of MAPbI3 perovskite, it is simulated under a different loading scenario which then failure is evaluated using Coulomb–Mohr criterion.


Computational Methods 


  1. 1.
    C. Eames, J.M. Frost, P.R.F. Barnes, B.C. O’Regan, A. Walsh, M.S. Islam, Nat. Commun. 6, 7497 (2015) ADSCrossRefGoogle Scholar
  2. 2.
    B. Nafradi, G. Nafradi, L. Forro, E. Horvath, J. Phys. Chem. C 119, 25204 (2105) Google Scholar
  3. 3.
    S. Yakunin, D.N. Dirin, Y. Shynkarenko, V. Morad, I. Cherniukh, O. Nazarenko, D. Kreil, T. Nauser, M.V. Kovalenko, Nat. Photon. 10, 585 (2016) ADSCrossRefGoogle Scholar
  4. 4.
    B. Nafradi, P. Szirmai, M. Spina, H. Lee, O.V. Yazyev, A. Arakcheeva, D. Chernyshov, M. Gilbert, K. Forro, Nat. Commun. 7, 13406 (2016) ADSCrossRefGoogle Scholar
  5. 5.
    L. Dimesso, M. Dimamay, M. Hamburger, W. Jaegermann, Chem. Mater. 26, 6762 (2014) CrossRefGoogle Scholar
  6. 6.
    J. Feng, APL Mater. 2, 081801 (2014) ADSCrossRefGoogle Scholar
  7. 7.
    Y. Rakita, S.R. Cohen, N.K. Kedem, G. Hodes, D. Cahen, MRS Commun. 5, 623 (2015) CrossRefGoogle Scholar
  8. 8.
    A. Mattoni, A. Filippetti, M.I. Saba, P. Delugas, J. Phys. Chem. C 119, 17421 (2015) CrossRefGoogle Scholar
  9. 9.
    A. Mattoni, A. Filippetti, C. Caddeo, J. Phys. 29, 043001 (2017) Google Scholar
  10. 10.
    A. Mattoni, A. Filippetti, M. Ilenia, C. Caddeo, P. Delugas, J. Phys. Chem. Lett. 7, 529 (2016) CrossRefGoogle Scholar
  11. 11.
    P. Delugas, C. Caddeo, A. Filippetti, A. Mattoni, J. Phys. Chem. Lett. 7, 2356 (2016) CrossRefGoogle Scholar
  12. 12.
    S. Liu, R.E. Cohen, (2016)
  13. 13.
    S. Liu, R.E. Cohen, J. Phys. Chem. C 120, 17274 (2016) CrossRefGoogle Scholar
  14. 14.
    J. Yu, M. Wang, S. Lin, ACS Nano 10, 11044 (2016) CrossRefGoogle Scholar
  15. 15.
    C.C. Stoumpos, C.D. Malliakas, M.G. Kanatzidis, Inorg. Chem. 52, 9019 (2013) CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Saeed Momeni Bashusqeh
    • 1
    Email author
  • Esmaeil Zarezadeh
    • 2
  • Javad Eshaghi
    • 3
  • Kamran Farajzadeh
    • 3
  1. 1.School of Mechanical Engineering, College of Engineering, University of TehranTehranIran
  2. 2.Faculty of Electrical Engineering, Khatam-ol-Anbia UniversityTehranIran
  3. 3.Islamic Azad University, Science and Research BranchTehranIran

Personalised recommendations