Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Ab initio molecular dynamics simulation of irradiation particles behavior in tungsten

  • 49 Accesses

Abstract

Tungsten (W) is a candidate material for plasma facing materials (PFMs), which is expected to suffer from a high flux of irradiation particles as well as a significant heat load. In the present work, ab initio molecular dynamics (AIMD) simulation is performed to study the irradiation damage of the W lattice and the behavior of the irradiation particles in the W lattice. Both low-energy hydrogen (LoE-H) (52 eV) and high-energy hydrogen (HiE-H) (5.2 keV) irradiations are considered, and low-energy carbon (LoE-C) (56 eV) irradiation is also considered for comparison. It is found that the energy absorption process is much faster for LoE-C irradiation than LoE-H irradiation, due to the much stronger interactions between C atoms and the W lattice. As a result, vacancy defects can be created by C atom irradiation at the surface area. The travelling depth of LoE-H particles is estimated to be about 140 Å, about one order of magnitude larger than that of LoE-C particles (12 Å). It is also found that the behavior of HiE-H particles in the W lattice is completely different to that of the LoE-H. Without considering the direct nuclei collision between the HiE-H and the W nuclei, HiE-H particles move almost linearly in the W lattice within the 1 ps simulation time, and the travelling depth is evaluated to be about 140 μm. HiE-H irradiation damage to the W lattice is not observed in the AIMD simulation, suggesting that damage from HiE-H can only occur during the direct nuclei collision.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    https://doi.org/www.iter.org

  2. 2.

    J.G. Li, Physics 45, 88 (2016)

  3. 3.

    S.J. Zinkle, J.T. Busby, Mater. Today 12, 12 (2009)

  4. 4.

    H. Kurishita, S. Matsuo, H. Arakawa, M. Narui, M. Yamazaki, T. Sakamoto, S. Kobayashi, K. Nakai, T. Takida, K. Takebe, J. Nucl. Mater. 386, 579 (2009)

  5. 5.

    S. Wurster, N. Baluc, M. Battabyal, T. Crosby, J. Dud, C. García-Rosales, A. Hasegawa, A. Hoffmann, A. Kimura, H. Kurishita, R.J. Kurtz, H. Li, S. Noh, J. Reiser, J. Riesch, M. Rieth, W. Setyawan, M. Walter, J.H. You, R. Pippan, J. Nucl. Mater. 442, S181 (2013)

  6. 6.

    A. Genç, S. Coşkun, M.L. Öveçoğlu, J. Alloys Compound. 497, 80 (2010)

  7. 7.

    D.Y. Jiang, C.Y. Ouyang, S.Q. Liu, Fusion Eng. Des. 121, 227 (2017)

  8. 8.

    S.J. Zinkle, L.L. Snead, Ann. Rev. Mater. Res. 44, 241 (2014)

  9. 9.

    G. Janeschitz, J. Nucl. Mater. 290, 1 (2001)

  10. 10.

    W.M. Shu, G.N. Luo, T. Yamanishi, J. Nucl. Mater. 367, 1463 (2007)

  11. 11.

    M. Rutigliano, D. Santoro, M. Balat-Pichelin, Surf. Sci. 628, 66 (2014)

  12. 12.

    K. Ouaras, L. Colina Delacqua, C. Quirós, G. Lombardi, M. Redolfi, D. Vrel, K. Hassouni, X. Bonnin, J. Phys.: Conf. Ser. 591, 012029 (2015)

  13. 13.

    M. Fukumoto, H. Kashiwagi, Y. Ohtsuka, Y. Ueda, Y. Nobuta, J. Yagyu, T. Arai, M. Taniguchi, T. Inoue, K. Sakamoto, J. Nucl. Mater. 386–388, 768 (2009)

  14. 14.

    J.T. Zhao, X. Meng, X.C. Guan, Q. Wang, K.H. Fang, X.H. Xu, Y.K. Lu, J. Gao, Z.L. Liu, T.S. Wang, J. Nucl. Mater. 503, 198 (2018)

  15. 15.

    C.Y. Ouyang, Y.S. Lee, Phys. Rev. B 83, 045111 (2011)

  16. 16.

    K. Heinola, T. Ahlgren, J. Appl. Phys. 107, 113531 (2010)

  17. 17.

    Y.L. Liu, W. Lu, A.Y. Gao, L.J. Gui, Chin. Phys. B 21, 126103 (2012)

  18. 18.

    Y.L. Liu, Y. Zhang, H.B. Zhou, G.H. Lu, F. Liu, G.N. Luo, Phys. Rev. B 79, 172103 (2009)

  19. 19.

    L.T. Guo, J.Z. Sun, Y. Huang, S.G. Liu, D.Z. Wang, Acta Phys. Sin. 62, 227901 (2013)

  20. 20.

    G.J. Niu, X.C. Li, Q. Xu, Z.S. Yang, G.N. Luo, Plasma Sci. Tech. 17, 1072 (2015)

  21. 21.

    P.N. Maya, J. Nucl. Mater. 480, 411 (2016)

  22. 22.

    R. Car, M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985)

  23. 23.

    P. Geerlings, F. De Proft, W. Langenaeker, Chem. Rev. 103, 1793 (2003)

  24. 24.

    G. Kresse, J. Hafner, Phys. Rev. B 47, 558 (1993)

  25. 25.

    G. Kresse, J. Furthmuller, Phys. Rev. B 54, 11169 (1996)

  26. 26.

    P.E. Blöchl, Phys. Rev. B 50, 17953 (1994)

  27. 27.

    G. Kresse, Phys. Rev. B 59, 1758 (1999)

  28. 28.

    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

  29. 29.

    H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

  30. 30.

    D.Y. Jiang, C.Y. Ouyang, S.Q. Liu, Fusion Eng. Des. 106, 34 (2016)

  31. 31.

    L. Verlet, Phys. Rev. 159, 98 (1967)

  32. 32.

    L. Vitos, A.V. Rubana, H.L. Skriver, J. Kollarb, Surf. Sci. 411, 186 (1998)

  33. 33.

    J.M. Zhang, D.D. Wang, K.W. Xu, Appl. Surf. Sci. 252, 8217 (2006)

  34. 34.

    Y.N. Wen, J.M. Zhang, Comput. Mater. Sci. 42, 281 (2008)

  35. 35.

    E. Rutherford, Philos. Mag. 21, 669 (1904)

Download references

Author information

Correspondence to Chuying Ouyang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Luo, M., Liu, S. & Ouyang, C. Ab initio molecular dynamics simulation of irradiation particles behavior in tungsten. Eur. Phys. J. B 91, 231 (2018). https://doi.org/10.1140/epjb/e2018-90226-2

Download citation

Keywords

  • Computational Methods