Advertisement

Influence of bolstering network reciprocity in the evolutionary spatial Prisoner’s Dilemma game: a perspective

  • K. M. Ariful Kabir
  • Jun TanimotoEmail author
  • Zhen WangEmail author
Regular Article

Abstract

Many recent studies on evolutionary spatial Prisoner’s Dilemma (SPD) games have provided insights into the mechanisms and frameworks that bolster the effect of network reciprocity. In this article, we provide a concise and comprehensive review of previous studies on evolutionary games and network reciprocity. Subsequently, we evaluate and compare the results from such studies in a unified manner to answer an open question in evolutionary SPD games: What are the factors underlying network reciprocity and what effect do these factors have on the emergence and promotion of cooperation? As a first step, we introduce a novel indicator to quantitatively evaluate the effectiveness (contribution) of a final fraction of cooperators via the introduction of the associated mechanisms into a simple evolutionary SPD game. In this game, the players are located on a two-dimensional square lattice with the Moore neighborhood and update their strategies by imitating the strategy of the best performing player among their neighbors, and the dynamics are separated into two periods: the enduring (END) period and the expanding (EXP) period. The initial fraction of cooperators is decreased transiently via the invasion and exploitation of defectors in the END period, and over the period, the fraction of cooperators is increased to expand cooperative clusters in the EXP period. Moreover, we also evaluate the statistical validity of our indicator by performing regression analyses. Our results indicate that two factors bolster the effect of network reciprocity: (1) the shape of the cooperative cluster (C-cluster) formed in the END period and (2) the ability to expand a single “perfect C-cluster,” which is the smallest patch, to increase the opportunity for interactions between cooperators and defectors and reduce exploitation by defectors in the EXP period.

Graphical abstract

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    R.B. Myerson, 2016 in Game Theory: Analysis of Conflict (Harvard University Press, Cambridge), p. 1. Chapter-preview links, pp. vii–xi Google Scholar
  2. 2.
    R. Axelrod, W.D. Hamilton, Science 211, 1390 (1981) MathSciNetCrossRefADSGoogle Scholar
  3. 3.
    V. Neumann, O. Morgenstern, Theory of Games and Economic Behaviour (Princeton University Press, Princeton, 1953) Google Scholar
  4. 4.
    A.M. Colman, Game Theory and Its Applications in the Social and Biological Sciences (Psychology Press, Hove, UK, 2013) Google Scholar
  5. 5.
    E. Szathmary, S.J. Maynard, The Major Transitions in Evolution (Oxford University Press, Oxford, 2004) Google Scholar
  6. 6.
    N.S. Wingreen, S.A. Levin, PLoS Biol. 4, e299 (2006) CrossRefGoogle Scholar
  7. 7.
    G.S. Wilkinson, Nature 308, 181 (1984) CrossRefADSGoogle Scholar
  8. 8.
    T.H. Clutton-Brock, M. O’Riain, P. Brotherton, D. Gaynor, R. Kansky, A. Griffin, Science 284, 1640 (1999) CrossRefADSGoogle Scholar
  9. 9.
    R.M. Seyfarth, D.L. Cheney, Nature 308, 541 (1984) CrossRefADSGoogle Scholar
  10. 10.
    M. Milinski, Nature 325, 433 (1987) CrossRefADSGoogle Scholar
  11. 11.
    J. Cremer, A. Melbinger, E. Frey, Sci. Rep. 2, 281 (2012) CrossRefADSGoogle Scholar
  12. 12.
    B. Drossel, Adv. Phys. 50, 209 (2001) CrossRefADSGoogle Scholar
  13. 13.
    J.C. Choe, B.J. Crespi, The Evolution of Social Behaviour in Insects and Arachnids (Cambridge University Press, Cambridge, 1997) Google Scholar
  14. 14.
    L. Avilés, Proc. Natl. Acad. Sci. USA 99, 14268 (2002) CrossRefADSGoogle Scholar
  15. 15.
    C. Xia, S. Ding, C. Wang, J. Wang, Z. Chen, IEEE Syst. J. 99, 1 (2016) Google Scholar
  16. 16.
    C. Li, L. Wang, S. Sun, C. Xia, Appl. Math. Comput. 320, 512 (2017) Google Scholar
  17. 17.
    J.F. Nash, Proc. Natl. Acad. Sci. USA 36, 48 (1950) CrossRefADSGoogle Scholar
  18. 18.
    J. Maynard Smith, G.R. Price, Nature 246, 15 (1973) CrossRefGoogle Scholar
  19. 19.
    T. Vincent, in Evolutionary Game Theory, Natural Selection, and Darwinian Dynamics (Cambridge University Press, Cambridge, 2005), pp. 72–87 Google Scholar
  20. 20.
    J.W. Weibull, Evolutionary Game Theory (MIT Press, Massachusetts, 1997) Google Scholar
  21. 21.
    P.D. Taylor, L.B. Jonker, Math. Biosci. 40, 145 (1978) MathSciNetCrossRefGoogle Scholar
  22. 22.
    L. Dugatkin, in Game Theory and Animal Behavior (Oxford University Press, Oxford, 1998), pp. 2–20 Google Scholar
  23. 23.
    G. Hardin, Science 162, 1243 (1968) CrossRefADSGoogle Scholar
  24. 24.
    J.M. Smith, Evolution and the Theory of Games (Cambridge University Press, 1982) Google Scholar
  25. 25.
    J. Hofbauer, K. Sigmund, Evolutionary Games and Population Dynamics (Cambridge University Press, Cambridge, 1998) Google Scholar
  26. 26.
    R. Axelrod, W.D. Hamilton, Science 211, 1390 (1981) MathSciNetCrossRefADSGoogle Scholar
  27. 27.
    J. Maynard Smith Evolution and the Theory of Games (Cambridge University Press, Cambridge, 1982) Google Scholar
  28. 28.
    M.A. Nowak, Evolutionary Dynamics (Harvard University Press, Cambridge, 2006) Google Scholar
  29. 29.
    G. Szabo, G. Fath, Phys. Rep. 446, 97 (2007) MathSciNetCrossRefADSGoogle Scholar
  30. 30.
    R. Axelrod, The Evolution of Cooperation (Basic Books, New York, 1984) Google Scholar
  31. 31.
    M. Doebeli, C. Hauert, Ecol. Lett. 8, 748 (2005) CrossRefGoogle Scholar
  32. 32.
    M.A. Nowak, Science 314, 1560 (2006) CrossRefADSGoogle Scholar
  33. 33.
    M.A. Nowak, R.M. May, Nature 359, 826 (1992) CrossRefADSGoogle Scholar
  34. 34.
    C. Hauert, H.G. Schuster, Proc. R. Soc. Lond. B 264, 513 (1997) CrossRefADSGoogle Scholar
  35. 35.
    M. Ifti, T. Killingback, M. Doebeli, J. Theor. Biol. 231, 97 (2004) CrossRefGoogle Scholar
  36. 36.
    G. Szabó, C. Toke, Phys. Rev. E 58, 69 (1998) CrossRefADSGoogle Scholar
  37. 37.
    A. Rapoport, A. Chammah, Prisoner’s Dilemma (University of Michigan Press, Ann Arbor, 1965) Google Scholar
  38. 38.
    B. Robert, J. Theor. Biol. 136, 47 (1989) CrossRefGoogle Scholar
  39. 39.
    B. Robert, P. Jeffrey, Nature 327, 58 (1987) CrossRefGoogle Scholar
  40. 40.
    F. Joseph, W. Roger, Theor. Popul. Biol. 36, 161 (1989) CrossRefGoogle Scholar
  41. 41.
    D.B. Fogel, Evol. Comput. 3, 349 (1995) CrossRefGoogle Scholar
  42. 42.
    P. Grim, Theor. Decis. 42, 53 (1997) MathSciNetCrossRefGoogle Scholar
  43. 43.
    O. Kirchkamp, J. Ecol. Behav. Org. 43, 239 (2000) CrossRefGoogle Scholar
  44. 44.
    S.L. Lima, Am. Nat. 134, 828 (1989) CrossRefGoogle Scholar
  45. 45.
    L. Jeffrey, J. Theor. Biol. 168, 117 (1994) CrossRefGoogle Scholar
  46. 46.
    M. Macy, Sociol. Methods Res. 25, 103 (1996) CrossRefGoogle Scholar
  47. 47.
    M. Heinz, Complex Syst. 5, 459 (1991) Google Scholar
  48. 48.
    M.A. Nowak, S. Karl, J. Theor. Biol. 168, 219 (1994) CrossRefGoogle Scholar
  49. 49.
    C. Taylor, M.A. Nowak, Evolution 61, 2281 (2007) CrossRefGoogle Scholar
  50. 50.
    R. Trivers, Q. Rev. Biol. 46, 35 (1971) CrossRefGoogle Scholar
  51. 51.
    R. Trivers, Social Evolution (Benjamin/Cummings, Menlo Park, 1985) Google Scholar
  52. 52.
    R. Alexander, The Biology of Moral Systems (Aldine De Gruyter, New York, 1987) Google Scholar
  53. 53.
    M.A. Nowak, K. Sigmund, Nature 393, 573 (1998) CrossRefADSGoogle Scholar
  54. 54.
    W.D. Hamilton, J. Theor. Biol. 7, 1 (1964) CrossRefGoogle Scholar
  55. 55.
    D.S. Wilson, Proc. Natl. Acad. Sci. USA 72, 143 (1975) CrossRefADSGoogle Scholar
  56. 56.
    G.C. Williams, Adaption and Natural Selection: A Critique of Some Current Evolutionary Thought (Princeton University Press, Princeton, 1996) Google Scholar
  57. 57.
    V.C. Wynne-Edwards, Animal Dispersion in Relation to Social Behavior (Oliver and Boyd, Edinburg, 1962) Google Scholar
  58. 58.
    M. Slatkin, M.J. Wade, Proc. Natl. Acad. Sci. USA 75, 3531 (1978) CrossRefADSGoogle Scholar
  59. 59.
    J. Maynard Smith, Q. Rev. Biol. 51, 277 (1976) CrossRefGoogle Scholar
  60. 60.
    A. Traulsen, M.A. Nowak, Proc. Natl. Acad. Sci. USA 103, 10952 (2006) CrossRefADSGoogle Scholar
  61. 61.
    M.A. Nowak, R.M. May, Nature 359, 826 (1992) CrossRefADSGoogle Scholar
  62. 62.
    H. Ebel, S. Bornholdt, Phys. Rev. E 66, 056118 (2002) CrossRefADSGoogle Scholar
  63. 63.
    M.P. Hassell, H.N. Comins, R.M. May, Nature 313, 10 (1994) Google Scholar
  64. 64.
    F.C. Santos, J.M. Pacheco, Phys. Rev. Lett. 95, 098104 (2005) CrossRefADSGoogle Scholar
  65. 65.
    A. Yamauchi, J. Tanimoto, A. Hagishima, Biosystems 102, 82 (2010) CrossRefGoogle Scholar
  66. 66.
    F.C. Santos, J.M. Pacheco, T. Lenaerts, PLoS Comput. Biol. 2, 1284 (2006) CrossRefGoogle Scholar
  67. 67.
    C. Hauert, G. Szabó, Am. J. Phys. 73, 405 (2005) CrossRefADSGoogle Scholar
  68. 68.
    H. Ohtsuki, C. Hauert, E. Lieberman, M.A. Nowak, Nature 441, 502 (2006) CrossRefADSGoogle Scholar
  69. 69.
    S.P. Ellner, B.A. Bailey, G.V. Bobashev, A.R. Gallant, B.T. Grenfell, D.W. Nychka, Am. Nat. 151, 425 (1998) CrossRefGoogle Scholar
  70. 70.
    K. Langer, M.G. Anhorn, I. Steinhauser, S. Dreis, D. Celebi, N. Schrickel, S. Faust, V. Vogel, Int. J. Pharm. 22, 347 109 (2008) Google Scholar
  71. 71.
    J.F Le Galliard, R. Ferriére, U. Dieckmann, Evolution 57, 1 (2003) CrossRefGoogle Scholar
  72. 72.
    M. Nakamaru, H. Matsuda, Y. Iwasa, J. Theor. Biol. 184, 65 (1997) CrossRefGoogle Scholar
  73. 73.
    M. Nakamaru, H. Matsuda, Y. Iwasa, Sociol. Theor. Methods 12, 149 (1997) Google Scholar
  74. 74.
    M. Taylor, M.A. Nowak, Evolution 61, 2281 (2007) CrossRefGoogle Scholar
  75. 75.
    V.M. Baalen, D.A. Rand, J. Theor. Biol. 21, 631 (1998) CrossRefGoogle Scholar
  76. 76.
    D.P. Yang, H. Lin, C.X. Wu, J. Shuai, New J. Phys. 11, 073048 (2009) CrossRefADSGoogle Scholar
  77. 77.
    F.C. Santos, J.M. Pacheco, Phys. Rev. Lett. 95, 098104 (2005) CrossRefADSGoogle Scholar
  78. 78.
    J. Peña, H. Volken, E. Pestelacci, M. Tomassini, Phys. Rev. E 80, 016110 (2009) CrossRefADSGoogle Scholar
  79. 79.
    J. Poncela, J. Gómez-Gardenes, Y. Moreno, Phys. Rev. E 83, 057101 (2011) CrossRefADSGoogle Scholar
  80. 80.
    C. Gracia-Lézaro, A. Ferrer, G. Ruiz, A. Tarancón, J.A. Cuesta, A. Sénchez, Proc. Natl. Acad. Sci. USA 109, 12922 (2012) CrossRefADSGoogle Scholar
  81. 81.
    Z.Q. Ma, C.Y. Xia, S.W. Sun, L. Wang, H.B. Wang, J. Wang, Int. J. Mod. Phys. C 22, 1257 (2011) CrossRefADSGoogle Scholar
  82. 82.
    J. Gómez-Gardeñes, M. Campillo, L. Floría, Y. Moreno, Phys. Rev. Lett. 98, 108103 (2007) CrossRefADSGoogle Scholar
  83. 83.
    S. Boccaletti, G. Bianconi, R. Criado, C.D. Genio, J. Gómez-Gardeñes, M. Romance, Phys. Rep. 544, 1 (2014) MathSciNetCrossRefADSGoogle Scholar
  84. 84.
    M. Berde, EPL 94, 30003 (2011) CrossRefADSGoogle Scholar
  85. 85.
    R. Cong, Y.Y. Qiu, X.J. Chen, L. Wang, CPL 27, 030203 (2010) Google Scholar
  86. 86.
    Q. Dai, H. Li, H. Cheng, Y. Li, J. Yang, New J. Phys. 12, 113015 (2010) CrossRefADSGoogle Scholar
  87. 87.
    R. Ogasawara, K. Nakazato, K. Sato, M.D. Boppart, S. Fujita, Phys. Rep. 2, e12212 (2014) CrossRefGoogle Scholar
  88. 88.
    Q. Pan, S. Shi, Y. Zhang, M. He, Chaos Solitons Fractals 56, 166 (2013) CrossRefADSGoogle Scholar
  89. 89.
    M. Perc, New J. Phys. 8, 22 (2006) CrossRefADSGoogle Scholar
  90. 90.
    M. Perc, EPL 75, 841 (2006) CrossRefADSGoogle Scholar
  91. 91.
    M. Perc, Phys. Rev. E 75, 022101 (2007) CrossRefADSGoogle Scholar
  92. 92.
    G. Ren, W. Wang, Physica A 408, 40 (2014) MathSciNetCrossRefADSGoogle Scholar
  93. 93.
    K. Shigaki, J. Tanimoto, Z. Wang, E. Fukuda, PLoS One 8, e76942 (2013) CrossRefADSGoogle Scholar
  94. 94.
    A. Szolnoki, M. Perc, M. Mobilia, Phys. Rev. E 89, 042802 (2014) CrossRefADSGoogle Scholar
  95. 95.
    J. Tanimoto, Phys. Rev. E 76, 021126 (2007) CrossRefADSGoogle Scholar
  96. 96.
    J. Tanimoto, Phys. Rev. E 76, 041130 (2007) CrossRefADSGoogle Scholar
  97. 97.
    M.H. Vainstein, J.J. Arenzon, Phys. Rev. E 64, 051905 (2001) CrossRefADSGoogle Scholar
  98. 98.
    C. Xia, Q. Miao, J. Zhang, Chaos Solitons Fractals 51, 22 (2013) MathSciNetCrossRefADSGoogle Scholar
  99. 99.
    F. Fu, M.A. Nowak, C. Hauert, J. Theor. Biol. 266, 358 (2010) CrossRefGoogle Scholar
  100. 100.
    C. Hauert, Proc. R. Soc. Lond. B 268, 761 (2001) CrossRefGoogle Scholar
  101. 101.
    K. Shigaki, J. Tanimoto, Z. Wang, A. Hagishima, N. Ikegaya, Phys. Rev. E 86, 031141 (2012) CrossRefADSGoogle Scholar
  102. 102.
    Z. Wang, S. Kokubo, J. Tanimoto, E. Fukuda, K. Shigaki, Phys. Rev. E 88, 042145 (2013) CrossRefADSGoogle Scholar
  103. 103.
    Z. Wang, M. Perc, Phys. Rev. E 82, 021115 (2010) CrossRefADSGoogle Scholar
  104. 104.
    J. Tanimoto, J. Appl. Math. Comput. 263, 171 (2015) CrossRefGoogle Scholar
  105. 105.
    Z. Wang, et al., Sci. Adv. 3, e1601444 (2017) CrossRefADSGoogle Scholar
  106. 106.
    X.L. Li, et al., Proc. Natl. Acad. Sci. USA 115, 30 (2018) CrossRefADSGoogle Scholar
  107. 107.
    Z. Wang, M. Jusup, L. Shi, J.H. Lee, Y. Iwasa, S. Boccaletti, Nat. Commun. 2954, 9 (2018) Google Scholar
  108. 108.
    C. Shen, C. Chu, L. Shi, M. Perc, Z. Wang, R. Soc. Open Sci. 5, 180199 (2018) CrossRefADSGoogle Scholar
  109. 109.
    C. Shen, C. Chu, H. Guo, L. Shi, J.Y. Duan, Sci. Rep. 7, 15213 (2017) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Interdisciplinary Graduate School of Engineering Sciences, Kyushu UniversityFukuokaJapan
  2. 2.School of Mechanical Engineering and Center for OPTical IMagery Analysis and Learning (OPTIMAL), Northwestern Polytechnical UniversityXi’anP.R. China

Personalised recommendations