Microscopic theory of refractive index applied to metamaterials: effective current response tensor corresponding to standard relation n2 = εeffμeff
Abstract
In this article, we first derive the wavevector- and frequency-dependent, microscopic current response tensor which corresponds to the “macroscopic” ansatz D = ε0εeffE and B = μ0μeffH with wavevector- and frequency-independent, “effective” material constants εeff and μeff. We then deduce the electromagnetic and optical properties of this effective material model by employing exact, microscopic response relations. In particular, we argue that for recovering the standard relation n2 = εeffμeff between the refractive index and the effective material constants, it is imperative to start from the microscopic wave equation in terms of the transverse dielectric function, εT(k, ω) = 0. On the phenomenological side, our result is especially relevant for metamaterials research, which draws directly on the standard relation for the refractive index in terms of effective material constants. Since for a wide class of materials the current response tensor can be calculated from first principles and compared to the model expression derived here, this work also paves the way for a systematic search for new metamaterials.
Keywords
Solid State and MaterialsReferences
- 1.J.D. Jackson, Classical electrodynamics, 3rd edn. (John Wiley & Sons, Inc., Hoboken, NJ, 1999) Google Scholar
- 2.D.J. Griffiths, Introduction to electrodynamics, 3rd edn. (Prentice-Hall, Inc., Upper Saddle River, NJ, 1999) Google Scholar
- 3.L.D. Landau, E.M. Lifshitz, in Electrodynamics of continuous media, 2nd edn., Course of theoretical physics, (Pergamon Press Ltd, Oxford, 1984), Vol. 8 Google Scholar
- 4.G.F. Giuliani, G. Vignale, Quantum theory of the electron liquid (Cambridge University Press, Cambridge, 2005) Google Scholar
- 5.J. Kohanoff, Electronic structure calculations for solids and molecules: theory and computational methods (Cambridge University Press, Cambridge, 2006) Google Scholar
- 6.R.M. Martin, Electronic structure: basic theory and practical methods (Cambridge University Press, Cambridge, 2008) Google Scholar
- 7.P. Nozières, D. Pines, Phys. Rev. 109, 741 (1958) ADSMathSciNetCrossRefGoogle Scholar
- 8.P. Nozières, D. Pines, Il Nuovo Cimento 9, 470 (1958) Google Scholar
- 9.L.V. Keldysh, D.A. Kirzhnitz, A.A. Maradudin, The dielectric function of condensed systems, Modern problems in condensed matter sciences (Elsevier Science Publishers B.V., Amsterdam, 1989) Google Scholar
- 10.C. Kittel, Introduction to solid state physics, 7th edn. (John Wiley & Sons, Inc., New York, 1996) Google Scholar
- 11.T. Fließbach, Elektrodynamik: Lehrbuch zur Theoretischen Physik II, 6th edn. (Springer-Verlag, Berlin, Heidelberg, 2012) Google Scholar
- 12.D.B. Melrose, in Quantum plasmadynamics: unmagnetized plasmas, Lecture notes in physics (Springer, New York, 2008), Vol. 735 Google Scholar
- 13.D.B. Melrose, in Quantum plasmadynamics: magnetized plasmas, Lecture notes in physics (Springer, New York, 2013), Vol. 854 Google Scholar
- 14.H. Bruus, K. Flensberg, Many-body quantum theory in condensed matter physics: an introduction (Oxford University Press, Oxford, 2004) Google Scholar
- 15.P.A. Martin, F. Rothen, Many-body problems and quantum field theory: an introduction (Springer-Verlag, Berlin, Heidelberg, 2002) Google Scholar
- 16.E. Kaxiras, Atomic and electronic structure of solids (Cambridge University Press, Cambridge, 2003) Google Scholar
- 17.W. Schäfer, M. Wegener, Semiconductor optics and transport phenomena, advanced texts in physics (Springer-Verlag, Berlin, Heidelberg, 2002) Google Scholar
- 18.W. Hanke, Adv. Phys. 27, 287 (1978) ADSCrossRefGoogle Scholar
- 19.G. Strinati, La Rivista del Nuovo Cimento 11, 1 (1988) ADSCrossRefGoogle Scholar
- 20.A. Zangwill, Modern electrodynamics (Cambridge University Press, Cambridge, 2012) Google Scholar
- 21.R. Starke, G.A.H. Schober, Photonics Nanostruct. Fundam. Appl. 26, 41 (2017) ADSCrossRefGoogle Scholar
- 22.R. Starke, G.A.H. Schober, Photonics Nanostruct. Fundam. Appl. 14, 1 (2015), ADSCrossRefGoogle Scholar
- 23.R. Starke, G.A.H. Schober, arXiv:1606.00445 (2016)
- 24.R. Starke, G.A.H. Schober, Optik 140, 62 (2017) ADSCrossRefGoogle Scholar
- 25.R. Starke, G.A.H. Schober, Optik 157, 275 (2018) ADSCrossRefGoogle Scholar
- 26.N.W. Ashcroft, N.D. Mermin, Solid state physics (Harcourt, Inc., Orlando, FL, 1976) Google Scholar
- 27.P.Y. Yu, M. Cardona, Fundamentals of semiconductors: physics and materials properties, 4th edn., Graduate texts in physics (Springer-Verlag, Berlin, Heidelberg, 2010) Google Scholar
- 28.J.B. Pendry, A.J. Holden, D.J. Robbins, W.J. Stewart, IEEE Trans. Microw. Theory Technol. 47, 2075 (1999) ADSCrossRefGoogle Scholar
- 29.V.G. Veselago, Sov. Phys. Usp. 10, 509 (1968) ADSCrossRefGoogle Scholar
- 30.D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, S. Schultz, Phys. Rev. Lett. 84, 4184 (2000) ADSCrossRefGoogle Scholar
- 31.R.A. Shelby, D.R. Smith, S. Schultz, Science 292, 77 (2001) ADSCrossRefGoogle Scholar
- 32.J.B. Pendry, Phys. Rev. Lett. 85, 3966 (2000) ADSCrossRefGoogle Scholar
- 33.D.R. Smith, J.B. Pendry, M.C.K. Wiltshire, Science 305, 788 (2004) ADSCrossRefGoogle Scholar
- 34.T. Ergin, N. Stenger, P. Brenner, J.B. Pendry, M. Wegener, Science 328, 337 (2010) ADSCrossRefGoogle Scholar
- 35.D. Forcella, C. Prada, R. Carminati, Phys. Rev. Lett. 118, 134301 (2017) ADSCrossRefGoogle Scholar
- 36.G.A.H. Schober, R. Starke, arXiv:1704.07594 (2017)
- 37.R. Starke, G.A.H. Schober, Int. J. Mod. Phys. D 25, 1640010 (2016) ADSCrossRefGoogle Scholar
- 38.R. Starke, G.A.H. Schober, arXiv:1606.00012 (2016)
- 39.Elk FP-LAPW Code (http://elk.sourceforge.net)
- 40.G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996) ADSCrossRefGoogle Scholar
- 41.P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, J. Luitz, WIEN2k, an augmented plane wave + local orbitals program for calculating crystal properties (Karlheinz Schwarz, Techn. Universität Wien, Austria, 2001) Google Scholar
- 42.P. Giannozzi et al., J. Phys. Condens. Matter 21, 395502 (2009) CrossRefGoogle Scholar
- 43.D. Schurig, J.J. Mock, B.J. Justice, S.A. Cummer, J.B. Pendry, A.F. Starr, D.R. Smith, Science 314, 977 (2006) ADSCrossRefGoogle Scholar
- 44.R. Starke, G.A.H. Schober, Int. J. Mod. Phys. D 26, 1750163 (2017) ADSCrossRefGoogle Scholar
- 45.O.V. Dolgov, E.G. Maksimov, in The dielectric function of condensed systems, series and number modern problems in condensed matter sciences, edited by L.V. Keldysh, D.A. Kirzhnitz, A.A. Maradudin (Elsevier Science Publishers B.V., Amsterdam, 1989) Google Scholar