Microscopic theory of refractive index applied to metamaterials: effective current response tensor corresponding to standard relation n2 = εeffμeff

  • Giulio A. H. SchoberEmail author
  • Ronald Starke
Regular Article


In this article, we first derive the wavevector- and frequency-dependent, microscopic current response tensor which corresponds to the “macroscopic” ansatz D = ε0εeffE and B = μ0μeffH with wavevector- and frequency-independent, “effective” material constants εeff and μeff. We then deduce the electromagnetic and optical properties of this effective material model by employing exact, microscopic response relations. In particular, we argue that for recovering the standard relation n2 = εeffμeff between the refractive index and the effective material constants, it is imperative to start from the microscopic wave equation in terms of the transverse dielectric function, εT(k, ω) = 0. On the phenomenological side, our result is especially relevant for metamaterials research, which draws directly on the standard relation for the refractive index in terms of effective material constants. Since for a wide class of materials the current response tensor can be calculated from first principles and compared to the model expression derived here, this work also paves the way for a systematic search for new metamaterials.


Solid State and Materials 


  1. 1.
    J.D. Jackson, Classical electrodynamics, 3rd edn. (John Wiley & Sons, Inc., Hoboken, NJ, 1999) Google Scholar
  2. 2.
    D.J. Griffiths, Introduction to electrodynamics, 3rd edn. (Prentice-Hall, Inc., Upper Saddle River, NJ, 1999) Google Scholar
  3. 3.
    L.D. Landau, E.M. Lifshitz, in Electrodynamics of continuous media, 2nd edn., Course of theoretical physics, (Pergamon Press Ltd, Oxford, 1984), Vol. 8 Google Scholar
  4. 4.
    G.F. Giuliani, G. Vignale, Quantum theory of the electron liquid (Cambridge University Press, Cambridge, 2005) Google Scholar
  5. 5.
    J. Kohanoff, Electronic structure calculations for solids and molecules: theory and computational methods (Cambridge University Press, Cambridge, 2006) Google Scholar
  6. 6.
    R.M. Martin, Electronic structure: basic theory and practical methods (Cambridge University Press, Cambridge, 2008) Google Scholar
  7. 7.
    P. Nozières, D. Pines, Phys. Rev. 109, 741 (1958) ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    P. Nozières, D. Pines, Il Nuovo Cimento 9, 470 (1958) Google Scholar
  9. 9.
    L.V. Keldysh, D.A. Kirzhnitz, A.A. Maradudin, The dielectric function of condensed systems, Modern problems in condensed matter sciences (Elsevier Science Publishers B.V., Amsterdam, 1989) Google Scholar
  10. 10.
    C. Kittel, Introduction to solid state physics, 7th edn. (John Wiley & Sons, Inc., New York, 1996) Google Scholar
  11. 11.
    T. Fließbach, Elektrodynamik: Lehrbuch zur Theoretischen Physik II, 6th edn. (Springer-Verlag, Berlin, Heidelberg, 2012) Google Scholar
  12. 12.
    D.B. Melrose, in Quantum plasmadynamics: unmagnetized plasmas, Lecture notes in physics (Springer, New York, 2008), Vol. 735 Google Scholar
  13. 13.
    D.B. Melrose, in Quantum plasmadynamics: magnetized plasmas, Lecture notes in physics (Springer, New York, 2013), Vol. 854 Google Scholar
  14. 14.
    H. Bruus, K. Flensberg, Many-body quantum theory in condensed matter physics: an introduction (Oxford University Press, Oxford, 2004) Google Scholar
  15. 15.
    P.A. Martin, F. Rothen, Many-body problems and quantum field theory: an introduction (Springer-Verlag, Berlin, Heidelberg, 2002) Google Scholar
  16. 16.
    E. Kaxiras, Atomic and electronic structure of solids (Cambridge University Press, Cambridge, 2003) Google Scholar
  17. 17.
    W. Schäfer, M. Wegener, Semiconductor optics and transport phenomena, advanced texts in physics (Springer-Verlag, Berlin, Heidelberg, 2002) Google Scholar
  18. 18.
    W. Hanke, Adv. Phys. 27, 287 (1978) ADSCrossRefGoogle Scholar
  19. 19.
    G. Strinati, La Rivista del Nuovo Cimento 11, 1 (1988) ADSCrossRefGoogle Scholar
  20. 20.
    A. Zangwill, Modern electrodynamics (Cambridge University Press, Cambridge, 2012) Google Scholar
  21. 21.
    R. Starke, G.A.H. Schober, Photonics Nanostruct. Fundam. Appl. 26, 41 (2017) ADSCrossRefGoogle Scholar
  22. 22.
    R. Starke, G.A.H. Schober, Photonics Nanostruct. Fundam. Appl. 14, 1 (2015), ADSCrossRefGoogle Scholar
  23. 23.
    R. Starke, G.A.H. Schober, arXiv:1606.00445 (2016)
  24. 24.
    R. Starke, G.A.H. Schober, Optik 140, 62 (2017) ADSCrossRefGoogle Scholar
  25. 25.
    R. Starke, G.A.H. Schober, Optik 157, 275 (2018) ADSCrossRefGoogle Scholar
  26. 26.
    N.W. Ashcroft, N.D. Mermin, Solid state physics (Harcourt, Inc., Orlando, FL, 1976) Google Scholar
  27. 27.
    P.Y. Yu, M. Cardona, Fundamentals of semiconductors: physics and materials properties, 4th edn., Graduate texts in physics (Springer-Verlag, Berlin, Heidelberg, 2010) Google Scholar
  28. 28.
    J.B. Pendry, A.J. Holden, D.J. Robbins, W.J. Stewart, IEEE Trans. Microw. Theory Technol. 47, 2075 (1999) ADSCrossRefGoogle Scholar
  29. 29.
    V.G. Veselago, Sov. Phys. Usp. 10, 509 (1968) ADSCrossRefGoogle Scholar
  30. 30.
    D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, S. Schultz, Phys. Rev. Lett. 84, 4184 (2000) ADSCrossRefGoogle Scholar
  31. 31.
    R.A. Shelby, D.R. Smith, S. Schultz, Science 292, 77 (2001) ADSCrossRefGoogle Scholar
  32. 32.
    J.B. Pendry, Phys. Rev. Lett. 85, 3966 (2000) ADSCrossRefGoogle Scholar
  33. 33.
    D.R. Smith, J.B. Pendry, M.C.K. Wiltshire, Science 305, 788 (2004) ADSCrossRefGoogle Scholar
  34. 34.
    T. Ergin, N. Stenger, P. Brenner, J.B. Pendry, M. Wegener, Science 328, 337 (2010) ADSCrossRefGoogle Scholar
  35. 35.
    D. Forcella, C. Prada, R. Carminati, Phys. Rev. Lett. 118, 134301 (2017) ADSCrossRefGoogle Scholar
  36. 36.
    G.A.H. Schober, R. Starke, arXiv:1704.07594 (2017)
  37. 37.
    R. Starke, G.A.H. Schober, Int. J. Mod. Phys. D 25, 1640010 (2016) ADSCrossRefGoogle Scholar
  38. 38.
    R. Starke, G.A.H. Schober, arXiv:1606.00012 (2016)
  39. 39.
    Elk FP-LAPW Code (
  40. 40.
    G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996) ADSCrossRefGoogle Scholar
  41. 41.
    P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, J. Luitz, WIEN2k, an augmented plane wave + local orbitals program for calculating crystal properties (Karlheinz Schwarz, Techn. Universität Wien, Austria, 2001) Google Scholar
  42. 42.
    P. Giannozzi et al., J. Phys. Condens. Matter 21, 395502 (2009) CrossRefGoogle Scholar
  43. 43.
    D. Schurig, J.J. Mock, B.J. Justice, S.A. Cummer, J.B. Pendry, A.F. Starr, D.R. Smith, Science 314, 977 (2006) ADSCrossRefGoogle Scholar
  44. 44.
    R. Starke, G.A.H. Schober, Int. J. Mod. Phys. D 26, 1750163 (2017) ADSCrossRefGoogle Scholar
  45. 45.
    O.V. Dolgov, E.G. Maksimov, in The dielectric function of condensed systems, series and number modern problems in condensed matter sciences, edited by L.V. Keldysh, D.A. Kirzhnitz, A.A. Maradudin (Elsevier Science Publishers B.V., Amsterdam, 1989) Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for Theoretical Solid State Physics, RWTH Aachen University, Otto-Blumenthal-StraßeAachenGermany
  2. 2.Institute for Theoretical Physics, TU Bergakademie FreibergFreibergGermany

Personalised recommendations