Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Optimal power series expansions of the Kohn–Sham potential

Abstract

A fundamental weakness of density functional theory (DFT) is the difficulty in making systematic improvements to approximations for the exchange and correlation functionals. In this paper, we follow a wave-function-based approach [N.I. Gidopoulos, Phys. Rev. A 83, 040502 (2011)] to develop perturbative expansions of the Kohn–Sham (KS) potential. Our method is not impeded by the problem of variational collapse of the second-order correlation energy functional. Arguing physically that a small magnitude of the correlation energy implies weak perturbation and hence fast convergence of the perturbative expansion for the interacting state and for the KS potential, we discuss several choices for the zeroth-order Hamiltonian in such expansions. Our first two choices yield KS potentials containing only Hartree and exchange terms: the exchange-only optimized effective potential (xOEP), also known as the exact-exchange potential (EXX), and the Local Fock exchange (LFX) potential. Finally, we choose the zeroth order Hamiltonian that corresponds to minimum magnitude of the second order correlation energy, aiming to obtain at first order the most accurate approximation for the KS potential with Hartree, exchange and correlation character.

References

  1. 1.

    D. Li, Y. Wang, K. Han, Coord. Chem. Rev. 256, 1137 (2012)

  2. 2.

    D. Duan, Y. Liu, F. Tian, D. Li, X. Huang, Z. Zhao, H. Yu, B. Liu, W. Tian, T. Cui, Sci. Rep. 4, 6968 (2014)

  3. 3.

    K. Burke, J. Chem. Phys. 136, 150901 (2012)

  4. 4.

    W. Kohn, Rev. Mod. Phys. 71, 1253 (1999)

  5. 5.

    J.A. Pople, Rev. Mod. Phys. 71, 1267 (1999)

  6. 6.

    E. Engel, R.M. Dreizler, J. Comput. Chem. 20, 31 (1999)

  7. 7.

    E. Engel, A. Höck, R.M. Dreizler, Phys. Rev. A 61, 032502 (2000)

  8. 8.

    I. Grabowski, S. Hirata, S. Ivanov, R.J. Bartlett, J. Chem. Phys. 116, 4415 (2002)

  9. 9.

    R.J. Bartlett, V.F. Lotrich, I.V. Schweigert, J. Chem. Phys. 123, 062205 (2005)

  10. 10.

    P. Mori-Sànchez, Q. Wu, W. Yang, J. Chem. Phys. 123, 062204 (2005)

  11. 11.

    I.V. Schweigert, V.F. Lotrich, R.J. Bartlett, J. Chem. Phys. 125, 104108 (2006)

  12. 12.

    I. Grabowski, V. Lotrich, R.J. Bartlett, J. Chem. Phys. 127, 154111 (2007)

  13. 13.

    R.J. Bartlett, Mol. Phys. 108, 3299 (2010)

  14. 14.

    M. Levy, Proc. Nat. Acad. Sci. USA 76, 6062 (1979)

  15. 15.

    E.H. Lieb, Int. J. Quant. Chem. 24, 243 (1983)

  16. 16.

    J. Harris, R.O. Jones, J. Phys. F 4, 1170 (1974)

  17. 17.

    D. Langreth, J. Perdew, J. Solid State Commun. 17, 1425 (1975)

  18. 18.

    O. Gunnarsson, B.I. Lundqvist, Phys. Rev. B 13, 4274 (1976)

  19. 19.

    A. Görling, M. Levy, Phys. Rev. B 47, 13105 (1993)

  20. 20.

    A. Görling, M. Levy, Phys. Rev. A 50, 196 (1994)

  21. 21.

    R.T. Sharp, G.K. Horton, Phys. Rev. 90, 317 (1953)

  22. 22.

    J.D. Talman, W.F. Shadwick, Phys. Rev. A 14, 36 (1976)

  23. 23.

    D. Rohr, O. Gritsenko, E. Baerends, Chem. Phys. Lett. 432, 336 (2006)

  24. 24.

    D. Bokhan, R.J. Bartlett, Chem. Phys. Lett. 427, 466 (2006)

  25. 25.

    S. Kurth, J.P. Perdew, Phys. Rev. B 59, 10461 (1999)

  26. 26.

    P. Verma, R.J. Bartlett, J. Chem. Phys. 136, 044105 (2012)

  27. 27.

    M. Hellgren, D.R. Rohr, E.K.U. Gross, J. Chem. Phys. 136, 034106 (2012)

  28. 28.

    P. Bleiziffer, A. Heßelmann, A. Görling, J. Chem. Phys. 136, 134102 (2012)

  29. 29.

    P. Bleiziffer, M. Krug, A. Görling, J. Chem. Phys. 142, 244108 (2015)

  30. 30.

    H.V. Nguyen, S. de Gironcoli, Phys. Rev. B 79, 205114 (2009)

  31. 31.

    G.P. Chen, V.K. Voora, M.M. Agee, S.G. Balasubramani, F. Furche, Ann. Rev. Phys. Chem. 68, 421 (2017)

  32. 32.

    X. Ren, P. Rinke, C. Joas, M. Scheffler, J. Math. Sci. 47, 7447 (2012)

  33. 33.

    R. Kubo, Rep. Prog. Phys. 29, 255 (1966)

  34. 34.

    R.W. Godby, M. Schlüter, L.J. Sham, Phys. Rev. B 37, 10159 (1988)

  35. 35.

    L. Sham, M. Schlüter, Phys. Rev. Lett. 51, 1888 (1983)

  36. 36.

    N.I. Gidopoulos, Phys. Rev. A 83, 040502 (2011)

  37. 37.

    E.H. Lieb, Int. J. Quantum Chem. 24, 243 (1983)

  38. 38.

    T.J. Irons, J.W. Furness, M.S. Ryley, J. Zemen, T. Helgaker, A.M. Teale, J. Chem. Phys. 147, 134107 (2017)

  39. 39.

    E.K. Gross, R.M. Dreizler, inDensity Functional Theory (Springer Science & Business Media, 2013), Vol. 337

  40. 40.

    E. Engel, R.M. Dreizler,Density Functional Theory: An Advanced Course (Springer Science & Business Media, 2011)

  41. 41.

    T. Hollins, S. Clark, K. Refson, N. Gidopoulos, J. Phys. Condens. Matter 29, 04LT01 (2016)

  42. 42.

    M. Levy, Proc. Natl. Acad. Sci. USA 76, 6062 (1979)

  43. 43.

    P.W. Payne, J. Chem. Phys. 71, 490 (1979)

  44. 44.

    I.G. Ryabinkin, A.A. Kananenka, V.N. Staroverov, Phys. Rev. Lett. 111, 013001 (2013)

  45. 45.

    A. Szabo, N.S. Ostlund,Modern Quantum Chemistry (Macmillan, New York, 2012)

  46. 46.

    T.W. Hollins, S.J. Clark, K. Refson, N.I. Gidopoulos, Phys. Rev. B 85, 235126 (2012)

  47. 47.

    S. Kümmel, J.P. Perdew, Phys. Rev. Lett. 90, 043004 (2003)

  48. 48.

    N.I. Gidopoulos, N.N. Lathiotakis, Phys. Rev. A 85, 052508 (2012)

  49. 49.

    A. Unsöld, Z. Phys. 43, 563 (1927)

  50. 50.

    J. Krieger, Y. Li, G. Iafrate, Phys. Rev. A 45, 101 (1992)

  51. 51.

    J. Krieger, Y. Li, G. Iafrate, Phys. Rev. A 46, 5453 (1992)

  52. 52.

    M. Grüning, O.V. Gritsenko, E. Baerends, J. Chem. Phys. 116, 6435 (2002)

  53. 53.

    F. Della Sala, A. Görling, J. Chem. Phys. 115, 5718 (2001)

  54. 54.

    V.N. Staroverov, G.E. Scuseria, E.R. Davidson, J.Chem. Phys. 125, 081104 (2006)

  55. 55.

    A.F. Izmaylov, V.N. Staroverov, G.E. Scuseria, E.R. Davidson, G. Stoltz, E. Cancès, J. Chem. Phys. 126, 084107 (2007)

  56. 56.

    W. Yang, P.W. Ayers, Q. Wu, Phys. Rev. Lett. 92, 146404 (2004)

Download references

Author information

Correspondence to Nikitas I. Gidopoulos.

Additional information

Contribution to the Topical Issue “Special issue in honor of Hardy Gross”, edited by C.A. Ullrich, F.M.S. Nogueira, A. Rubio, and M. Marques.

Rights and permissions

Open Access This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://doi.org/creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Callow, T.J., Gidopoulos, N.I. Optimal power series expansions of the Kohn–Sham potential. Eur. Phys. J. B 91, 209 (2018). https://doi.org/10.1140/epjb/e2018-90189-2

Download citation