Advertisement

Melting a Hubbard dimer: benchmarks of ‘ALDA’ for quantum thermodynamics

  • Marcela Herrera
  • Krissia Zawadzki
  • Irene D’Amico
Open Access
Regular Article
  • 29 Downloads
Part of the following topical collections:
  1. Topical issue: Special issue in honor of Hardy Gross

Abstract

The competition between evolution time, interaction strength, and temperature challenges our understanding of many-body quantum systems out-of-equilibrium. Here, we consider a benchmark system, the Hubbard dimer, which allows us to explore all the relevant regimes and calculate exactly the related average quantum work. At difference with previous studies, we focus on the effect of increasing temperature, and show how this can turn the competition between many-body interactions and driving field into synergy. We then turn to use recently proposed protocols inspired by density functional theory to explore if these effects could be reproduced by using simple approximations. We find that, up to and including intermediate temperatures, a method which borrows from ground-state adiabatic local density approximation improves dramatically the estimate for the average quantum work, including, in the adiabatic regime, when correlations are strong. However at high temperature and at least when based on the pseudo-LDA, this method fails to capture the counterintuitive qualitative dependence of the quantum work with interaction strength, albeit getting the quantitative estimates relatively close to the exact results.

References

  1. 1.
    W. Yang, P. Mori-Sanchez, A.J. Cohen, AIP Conf. Proc. 1504, 605 (2012) ADSCrossRefGoogle Scholar
  2. 2.
    K. Burke, J. Chem. Phys. 136. 150901 (2012) ADSCrossRefGoogle Scholar
  3. 3.
    J.P. Perdew, MRS Bull. 38, 743 (2013) CrossRefGoogle Scholar
  4. 4.
    R.O. Jones, Rev. Mod. Phys. 87, 897 (2015) ADSCrossRefGoogle Scholar
  5. 5.
    H.S. Yu, S.L. Li, D.G. Truhlar, J. Chem. Phys. 145, 130901 (2016) ADSCrossRefGoogle Scholar
  6. 6.
    E. Runge, E.K.U. Gross, Phys. Rev. Lett. 52, 997 (1984) ADSCrossRefGoogle Scholar
  7. 7.
    K. Burke, J. Werschnik, E.K.U. Gross, J. Chem. Phys. 123, 062206 (2005) ADSCrossRefGoogle Scholar
  8. 8.
    M.E. Casida, M. Huix-Rotllant, Annu. Rev. Phys. Chem. 63, 287 (2012) ADSCrossRefGoogle Scholar
  9. 9.
    C.A. Ullrich, Time-Dependent Density-Functional Theory: Concepts and Applications, (OUP, Oxford, 2011) Google Scholar
  10. 10.
    S. Kurth, G. Stefanucci, C.-O. Almbladh, A. Rubio, E.K.U. Gross, Phys. Rev. B 72, 035308 (2005) ADSCrossRefGoogle Scholar
  11. 11.
    D. Karlsson, A. Privitera, C. Verdozzi, Phys. Rev. Lett. 106, 116401 (2011) ADSCrossRefGoogle Scholar
  12. 12.
    M. Brandbyge, J. Mozos, P. Ordejón, J. Taylor, K. Stokbro, Phys. Rev. B 65, 165401 (2002) ADSCrossRefGoogle Scholar
  13. 13.
    J.C. Smith, F. Sagredo, K. Burke, in Warming Up Density Functional Theory, (Springer Singapore, Singapore, 2018) p. 249 Google Scholar
  14. 14.
    M. Herrera, R.M. Serra, I. D’Amico, Sci. Rep. 7, 4655 (2017) ADSCrossRefGoogle Scholar
  15. 15.
    A. Pribram-Jones, P.E. Grabowski, K. Burke, Phys. Rev. Lett. 116, 233001 (2016) ADSCrossRefGoogle Scholar
  16. 16.
    J. Goold, M. Huber, A. Riera, L. del Rio, P. Skrzypczyk, J. Phys. A: Math. Theor. 49, 143001 (2016) ADSCrossRefGoogle Scholar
  17. 17.
    S. Vinjanampathy, J. Anders, Contemp. Phys. 57, 545 (2016) ADSCrossRefGoogle Scholar
  18. 18.
    J. Millen, A. Xuereb, New J. Phys. 18, 011002 (2016) ADSCrossRefGoogle Scholar
  19. 19.
    J.M.R. Parrondo, J.M. Horowitz, T. Sagawa, Nat. Phys. 11, 131 (2015) CrossRefGoogle Scholar
  20. 20.
    D. Girolami, R. Schmidt, G. Adesso, Ann. Phys. 527, 757 (2015) MathSciNetCrossRefGoogle Scholar
  21. 21.
    D. Castelvecchi, Nature 543, 597 (2017) ADSCrossRefGoogle Scholar
  22. 22.
    C. Bustamante, J. Liphardt, F. Ritort, Phys. Today 58, 43 (2005) CrossRefGoogle Scholar
  23. 23.
    T.B. Batalhão, A.M. Souza, L. Mazzola, R. Auccaise, R.S. Sarthour, I.S. Oliveira, J. Goold, G. De Chiara, M. Paternostro, R.M. Serra, Phys. Rev. Lett. 113, 140601 (2014) ADSCrossRefGoogle Scholar
  24. 24.
    S. An, J.-N. Zhang, M. Um, D. Lv, Y. Lu, J. Zhang, Z.-Q. Yin, H.T. Quan, K. Kim, Nat. Phys. 11, 193 (2014) CrossRefGoogle Scholar
  25. 25.
    T. Batalhão, A.M. Souza, R.S. Sarthour, I.S. Oliveira, M. Paternostro, E. Lutz, R.M. Serra, Phys. Rev. Lett. 115, 190601 (2015) ADSCrossRefGoogle Scholar
  26. 26.
    J.P.S. Peterson, R.S. Sarthour, A.M. Souza, I.S. Oliveira, J. Goold, K. Modi, D.O. Soares-Pinto, L.C. Céleri, Proc. R. Soc. A 472, 20150813 (2016) ADSCrossRefGoogle Scholar
  27. 27.
    P.A. Camati, J.P.S. Peterson, T.B. Batalhão, K. Micadei, A.M. Souza, R.S. Sarthour, I.S. Oliveira, R.M. Serra, Phys. Rev. Lett. 117, 240502 (2016) ADSCrossRefGoogle Scholar
  28. 28.
    K. Micadei, J.P.S. Peterson, A.M. Souza, R.S. Sarthour, I.S. Oliveira, G.T. Landi, T.B. Batalhão, R.M. Serra, E.Lutz, Reversing the thermodynamic arrow of time using quantum correlations, https://doi.org/arXiv:1711.03323v1 (2017)
  29. 29.
    A. Silva, Phys. Rev. Lett. 101, 120603 (2008) ADSCrossRefGoogle Scholar
  30. 30.
    E. Mascarenhas, H. Bragança, R. Dorner, M.F. Santos, V. Vedral, K. Modi, J. Goold, Phys. Rev. E, 89, 062103 (2014) ADSCrossRefGoogle Scholar
  31. 31.
    L. Fusco, S. Pigeon, T.J.G. Apollaro, A. Xuereb, L. Mazzola, M. Campisi, A. Ferraro, M. Paternostro, G. De Chiara, Phys. Rev. X 4, 031029 (2014) Google Scholar
  32. 32.
    M. Zhong, P. Tong, Phys. Rev. E 91, 032137 (2015) ADSCrossRefGoogle Scholar
  33. 33.
    J. Eisert, M. Friesdorf, C. Gogolin, Nat. Phys. 11, 124 (2015) CrossRefGoogle Scholar
  34. 34.
    A. Leonard, S. Deffner, Chem. Phys. 446, 18 (2015) CrossRefGoogle Scholar
  35. 35.
    E. Solano-Carrillo, A.J. Millis, Phys. Rev. B 93, 224305 (2016) ADSCrossRefGoogle Scholar
  36. 36.
    D.J. Carrascal, J. Ferrer, J.C. Smith, K. Burke, J. Phys. Condens. Matter: 27, 393001 (2015) CrossRefGoogle Scholar
  37. 37.
    J.I. Fuks, N.T. Maitra, Phys. Chem. Chem. Phys. 16, 14504 (2014) CrossRefGoogle Scholar
  38. 38.
    J.P. Coe, V.V. França, I. D’Amico, Phys. Rev. A 81, 052321 (2010) ADSCrossRefGoogle Scholar
  39. 39.
    K. Kikoin, M. Kiselev, Y. Avishai. Dynamical Symmetries for Nanostructures. (Springer-Verlag, Wien, 2012) Google Scholar
  40. 40.
    P. Barthelemy, L.M.K. Vandersypen, Ann. Phys. 525, 808 (2013) MathSciNetCrossRefGoogle Scholar
  41. 41.
    S. Murmann, A. Bergschneider, V.M. Klinkhamer, G. Zürn, T. Lompe, S. Jochim, Phys. Rev. Lett. 114, 080402 (2015) ADSCrossRefGoogle Scholar
  42. 42.
    P. Talkner, E. Lutz, P. Hänggi, Phys. Rev. E 75, 050102 (2007) ADSCrossRefGoogle Scholar
  43. 43.
    J.P. Coe, A. Sudbery, I. Damico, Phys. Rev. B 77, 205122 (2008) ADSCrossRefGoogle Scholar
  44. 44.
    W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965) ADSCrossRefGoogle Scholar
  45. 45.
    K. Capelle, V.L. Campo, Phys. Rep. 528, 91 (2013) ADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    N.A. Lima, M.F. Silva, L.N. Oliveira, K. Capelle, Phys. Rev. Lett. 90, 146402 (2003) ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Marcela Herrera
    • 1
  • Krissia Zawadzki
    • 2
  • Irene D’Amico
    • 3
  1. 1.Centro de Ciências Naturais e Humanas, Universidade Federal do ABCSantoAndréBrazil
  2. 2.Departamento de Física e Ciência Interdisciplinar, Instituto de Física de São Carlos, Universidade de São PauloSão CarlosBrazil
  3. 3.Department of PhysicsUniversity of YorkYorkUK

Personalised recommendations