Theory of field emission

  • Shi-Dong LiangEmail author
Regular Article


A serious barrier impedes the comparison between the theoretical prediction and the experimental observation in field emission because there is no way to measure the emission area. We introduce three dimensionless variables ℛJ, 𝒮 and 𝒟 to construct a formulation for connecting directly the theoretical variables and experimental data without measuring the emission area. Based on this formulation we can analyze that the behaviors of ℛJ, 𝒮 and 𝒟 with the voltages between the anode and the emitter to reveals the characteristics of current–voltage (I–V) curve and detect the physical properties of emitters. This formulation provides a way to understand the fundamental physics of I–V curve in field emission and to set up a map between the physical properties of emitters and the experimental I–V curve.


Solid State and Materials 


  1. 1.
    N.S. Xu, S. Ejaz Huq, Mater. Sci. Eng. R 48, 47 (2005) CrossRefGoogle Scholar
  2. 2.
    J.M. Bonard, H. Kind, T. Stockli, L.O. Nilsson, Solid-State Electron. 45, 893 (2001) ADSCrossRefGoogle Scholar
  3. 3.
    J.M. Bonard, J.P. Salvetat, T. Stockli, L. Forro, A. Chatelain, Solid-State Appl. Phys. A69, 245 (1999) Google Scholar
  4. 4.
    A.O. Gogolin, A. Komnik, Phys. Rev. Lett. 87, 256806 (2001) ADSCrossRefGoogle Scholar
  5. 5.
    S.D. Liang, L. Chen, Phys. Rev. Lett. 101, 027602 (2008) ADSCrossRefGoogle Scholar
  6. 6.
    X. Yang, H. Gan, Y. Tian, L. Peng, N. Xu, J. Chen, H. Chen, S. Deng, S.D. Liang, F. Liu, Sci. Rep. 7, 13057 (2017) ADSCrossRefGoogle Scholar
  7. 7.
    S.D. Liang, Quantum tunneling and field electron emission theories (World Scientific Press, 2014) Google Scholar
  8. 8.
    J.W. Gadzuk, E.W. Plummer, Rev. Mod. Phys. 45, 487 (2010) ADSCrossRefGoogle Scholar
  9. 9.
    R.G. Forbes, Proc. R. Soc. A 469, 2158 (2013) CrossRefGoogle Scholar
  10. 10.
    R.G. Forbes, J.H.B. Deane, A. Fischer, M.S. Mousa, Jordan J. Phys. 8, 125 (2015) Google Scholar
  11. 11.
    R.G. Forbes, J. Vac. Sci. Technol. B 26, 209 (2008) CrossRefGoogle Scholar
  12. 12.
    W.P. Dyke et al., J. Appl. Phys. 24, 570 (1953) ADSCrossRefGoogle Scholar
  13. 13.
    W.P. Dyke, J.K. Tolan, Phys. Rev. 89, 799 (1953) ADSCrossRefGoogle Scholar
  14. 14.
    R.H. Fowler, L.W. Nordheim, Proc. R. Soc. Lond. A 119, 173 (1928) ADSCrossRefGoogle Scholar
  15. 15.
    W. Schottky, Phys. Z. 15, 872 (1914) Google Scholar
  16. 16.
    E.L. Murphy, R.H. Good, Phys. Rev. 102, 1464 (1956) ADSCrossRefGoogle Scholar
  17. 17.
    R.E. Burgess, H. Kroemer, J.M. Houston, Phys. Rev. 90, 516 (1953) ADSCrossRefGoogle Scholar
  18. 18.
    R.G. Forbes, C.J. Edgcombe, U. Valdr, Ultramicroscopy 95, 57 (2003) CrossRefGoogle Scholar
  19. 19.
    L.N. Dobretsov, M.V. Gomoyunova, Emission Electronics (Original version, in Russian, 1966; English version by Israel Program for Scientific Translations Ltd, printed by Keter Press, Jerusalem, 1971) Google Scholar
  20. 20.
    R.G. Forbes, in Proc. Young Researchers in Vacuum Micro/Nano Electronics Conf., St Petersburg, October 2016, edited by N.V. Egorov, K.A. Nikiforov, IEEE Explore, March 2017 (2016), pp. 31–39 Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Physics, State Key Laboratory of Optoelectronic Material and Technology, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-Sen UniversityGuangzhouP.R. China

Personalised recommendations