Advertisement

Spin-state energetics of iron(II) porphyrin from the particle-particle random phase approximation

  • Balazs Pinter
  • Rachael Al-Saadon
  • Zehua Chen
  • Weitao YangEmail author
Regular Article
Part of the following topical collections:
  1. Topical issue: Special issue in honor of Hardy Gross

Abstract

The particle-particle random phase approximation (pp-RPA) has been deployed to study the spin-state energetics of transition metal (TM) complexes for the first time in this work. Namely, we designed and implemented a non-canonical reference pp-RPA protocol that is capable of capturing the singlet low-spin (LS) – triplet intermediate-spin (IS) excitation process of iron(II) complexes; herein we applied this method to iron-porphyrin related heme derivatives with clearly defined LS and IS electronic states. Coupled to the CAM-B3LYP functional and to Dunning-type basis sets, we utilized both the active-space and Davidson methods to solve the pp-RPA equation effectively to obtain vertical singlet–triplet excitation energies. Correcting these vertical metrics with a structural relaxation factor for each species, we evaluated the relative stability of LS and IS electronic states. Comparison of the pp-RPA results to established ab initio data revealed that pp-RPA describes well excitation energies and related relative spin state stabilities if the transition is based on non-bonding d-orbitals, such as complexes without an axial ligand in the investigated set of molecules. But it notably overestimates the stability of the singlet LS state to the triplet IS state in complexes, where the d-orbitals at which the excitation is centered have bonding or antibonding character.

Supplementary material

References

  1. 1.
    M. Costas, J.N. Harvey, Nat. Chem. 5, 7 (2013) CrossRefGoogle Scholar
  2. 2.
    S. Shaik, H. Chen, D. Janardanan, Nat. Chem. 3, 19 (2011) CrossRefGoogle Scholar
  3. 3.
    J.N. Harvey, Phys. Chem. Chem. Phys. 9, 331 (2007) CrossRefGoogle Scholar
  4. 4.
    G. Xue et al., Nat. Chem. 2, 400 (2010) CrossRefGoogle Scholar
  5. 5.
    R.L. Lord, F.A. Schultz, M.-H. Baik, J. Am. Chem. Soc. 131, 6189 (2009) CrossRefGoogle Scholar
  6. 6.
    M. Swart, Int. J. Quantum Chem. 113, 2 (2013) CrossRefGoogle Scholar
  7. 7.
    M. Reiher, O. Salomon, B.A. Hess, Theor. Chem. Acc. 107, 48 (2001) CrossRefGoogle Scholar
  8. 8.
    B. Pinter, A. Chankisjijev, P. Geerlings, J.N. Harvey, F. De Proft, Chem. Eur. J. 24, 5281 (2008) CrossRefGoogle Scholar
  9. 9.
    J.N. Harvey, Annu. Rep. Sect. C (Phys. Chem.) 102, 203 (2006) CrossRefGoogle Scholar
  10. 10.
    J.N. Harvey, in Principles and Applications of Density Functional Theory in Inorganic Chemistry I, edited by N. Kaltsoyannis, J.E. McGrady (Springer, Berlin, Heidelberg, 2004), p. 151 Google Scholar
  11. 11.
    M. Radon, Phys. Chem. Chem. Phys. 16, 14479 (2014) CrossRefGoogle Scholar
  12. 12.
    M. Swart, Inorg. Chim. Acta 360, 179 (2007) CrossRefGoogle Scholar
  13. 13.
    M. Swart, J. Chem. Theory Comput. 4, 2057 (2008) CrossRefGoogle Scholar
  14. 14.
    T.F. Hughes, R.A. Friesner, J. Chem. Theory Comput. 7, 19 (2011) CrossRefGoogle Scholar
  15. 15.
    R.A. Friesner, E.H. Knoll, Y. Cao, J. Chem. Phys. 125, 124107 (2006) ADSCrossRefGoogle Scholar
  16. 16.
    D. Rinaldo et al., J. Chem. Phys. 129, 164108 (2008) ADSCrossRefGoogle Scholar
  17. 17.
    A.J. Cohen, P. Mori-Sánchez, W. Yang, Chem. Rev. 112, 289 (2012) CrossRefGoogle Scholar
  18. 18.
    P. Mori-Sánchez, A.J. Cohen, W. Yang, Phys. Rev. Lett. 100, 146401 (2008) ADSCrossRefGoogle Scholar
  19. 19.
    K. Pierloot, Mol. Phys. 101, 2083 (2003) ADSCrossRefGoogle Scholar
  20. 20.
    A.D. Becke, J. Chem. Phys. 119, 2972 (2003) ADSCrossRefGoogle Scholar
  21. 21.
    A.D. Becke, J. Chem. Phys. 122, 064101 (2005) ADSCrossRefGoogle Scholar
  22. 22.
    D. Cremer, Mol. Phys. 99, 1899 (2001) ADSCrossRefGoogle Scholar
  23. 23.
    V. Polo, E. Kraka, D. Cremer, Mol. Phys. 100, 1771 (2002) ADSCrossRefGoogle Scholar
  24. 24.
    M.J.G. Peach, D.J. Tozer, N.C. Handy, Int. J. Quantum Chem. 111, 563 (2011) CrossRefGoogle Scholar
  25. 25.
    Y. Yang, H. van Aggelen, W. Yang, J. Chem. Phys. 139, 224105 (2013) ADSCrossRefGoogle Scholar
  26. 26.
    D. Peng et al., J. Chem. Phys. 140, 18A522 (2014) CrossRefGoogle Scholar
  27. 27.
    P. Ring, P. Schuck, The Nuclear Many-Body Problem (Springer Science & Business Media, Berlin, Heidelberg, Germany, 2004) Google Scholar
  28. 28.
    D.J. Rowe, Rev. Mod. Phys. 40, 153 (1968) ADSCrossRefGoogle Scholar
  29. 29.
    H. van Aggelen, Y. Yang, W. Yang, J. Chem. Phys. 140, 18A511 (2014) CrossRefGoogle Scholar
  30. 30.
    H. van Aggelen, Y. Yang, W. Yang, Phys. Rev. A. 88, 030501 (2013) ADSCrossRefGoogle Scholar
  31. 31.
    M. Radoñ, J. Chem. Theory Comput. 10, 2306 (2014) CrossRefGoogle Scholar
  32. 32.
    K.P. Kepp, Coord. Chem. Rev. 257, 196 (2013) CrossRefGoogle Scholar
  33. 33.
    Y. Yang et al., J. Phys. Chem. A. 119, 4923 (2015) CrossRefGoogle Scholar
  34. 34.
    E. Runge, E.K.U. Gross, Phys. Rev. Lett. 52, 997 (1984) ADSCrossRefGoogle Scholar
  35. 35.
    M.A.L. Marques, E.K.U. Gross, in A Primer in Density Functional Theory, edited by C. Fiolhais, F. Nogueira, M.A.L. Marques (Springer, Berlin, Heidelberg, 2003), p. 144 Google Scholar
  36. 36.
    D. Zhang, W. Yang, J. Chem. Phys. 145, 144105 (2016) ADSCrossRefGoogle Scholar
  37. 37.
    Y. Yang, H.V. Aggelen, W. Yang, J. Chem. Phys. 139, 224105 (2013) ADSCrossRefGoogle Scholar
  38. 38.
    Y. Jin et al., J. Phys. Chem. Lett. 8, 4746 (2017) CrossRefGoogle Scholar
  39. 39.
    Z. Chen et al., J. Phys. Chem. Lett. 8, 4479 (2017) CrossRefGoogle Scholar
  40. 40.
    Y. Yang, E.R. Davidson, W. Yang, Proc. Natl. Acad. Sci. 113, E5098 (2016) CrossRefGoogle Scholar
  41. 41.
    K. Pierloot, Q.M. Phung, A. Domingo, J. Chem. Theory Comput. 13, 537 (2017) CrossRefGoogle Scholar
  42. 42.
    A.D. Becke, J. Chem. Phys. 98, 5648 (1993) ADSCrossRefGoogle Scholar
  43. 43.
    F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 7, 3297 (2005) CrossRefGoogle Scholar
  44. 44.
    F. Weigend, Phys. Chem. Chem. Phys. 8, 1057 (2006) CrossRefGoogle Scholar
  45. 45.
    C. Lee, W. Yang, R.G. Parr, Phys. Rev. B. 37, 785 (1988) ADSCrossRefGoogle Scholar
  46. 46.
    A.D. Becke, Phys. Rev. A 38, 3098 (1988) ADSCrossRefGoogle Scholar
  47. 47.
    T. Yanai, D.P. Tew, N.C. Handy, Chem. Phys. Lett. 393, 51 (2004) ADSCrossRefGoogle Scholar
  48. 48.
    T.H. Dunning Jr., J. Chem. Phys. 90, 1007 (1989) ADSCrossRefGoogle Scholar
  49. 49.
    R.A. Kendall, T.H. Dunning Jr., R.J. Harrison , J. Chem. Phys. 96, 6796 (1992) ADSCrossRefGoogle Scholar
  50. 50.
    D.E. Woon, T.H. Dunning Jr., J. Chem. Phys. 98, 1358 (1993) ADSCrossRefGoogle Scholar
  51. 51.
    M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, J. Farkas, B. Foresman, J. V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09, Revision B.01 (Gaussian, Inc., Wallingford, CT, USA, 2009) Google Scholar
  52. 52.
    Y. Yang et al., J. Chem. Phys. 141, 124104 (2014) ADSCrossRefGoogle Scholar
  53. 53.
    R. Rüger et al., J. Chem. Theory Comput. 11, 157 (2015) CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Balazs Pinter
    • 1
    • 2
    • 3
  • Rachael Al-Saadon
    • 2
  • Zehua Chen
    • 2
  • Weitao Yang
    • 2
    • 4
    • 5
    Email author
  1. 1.Departamento de Química, Universidad Técnica Federico Santa MaríaValparaisoChile
  2. 2.Department of ChemistryDuke UniversityDurhamUSA
  3. 3.Department of General ChemistryFree University of Brussels (VUB)BrusselsBelgium
  4. 4.Department of PhysicsDuke UniversityDurhamUSA
  5. 5.Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment, South China Normal UniversityGuangzhouP.R. China

Personalised recommendations