Advertisement

Stochastic sensitivity of cycles in periodic dynamical systems

  • Irina BashkirtsevaEmail author
Regular Article

Abstract

A non-linear dynamical system with periodic parameters is considered in presence of random noise. A dispersion of stochastic trajectories around the deterministic cycle is studied on the base of the stochastic sensitivity analysis. For weak noise, the asymptotics of this dispersion is found in a form of periodic matrix function named by the stochastic sensitivity matrix. This matrix is a solution of the boundary value problem for some matrix linear differential equation. A mathematical analysis of this problem is carried out, and an explicit solution is presented for one-dimensional case. The elaborated mathematical method is applied to the analysis of the stochastic population model with Allee effect and periodic modulation. A dependence of the stochastic sensitivity of oscillations on the amplitude and frequency of periodic forcing is investigated. A phenomenon of the noise-induced transition from persistence to extinction is studied by confidence domains constructed on the base of the stochastic sensitivity function technique.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    Y.A. Mitropolsky, A.M. Samoilenko, D.I. Martinyuk, Systems of Evolution Equations with Periodic and Quasiperiodic Coefficients (Springer, Berlin, 1993) Google Scholar
  2. 2.
    P. Blanchard, R.L. Devaney, G.R. Hall, Differential Equations (Brooks/Cole, Cengage Learning, Boston, Massachusetts, 2002) Google Scholar
  3. 3.
    V.A. Yakubovich, V.M. Starzhinskii, Linear Differential Equations with Periodic Coefficients (Wiley, New York, 1975) Google Scholar
  4. 4.
    L. Gammaitoni, P. Hanggi, P. Jung, F. Marchesoni, Rev. Mod. Phys. 70, 223 (1998) ADSCrossRefGoogle Scholar
  5. 5.
    M. McDonnell, N. Stocks, C. Pearce, D. Abbott, Stochastic Resonance: from Suprathreshold Stochastic Resonance to Stochastic Signal Quantization (Cambridge University Press, Cambridge, 2008) Google Scholar
  6. 6.
    N.V. Agudov, A.V. Krichigin, D. Valenti, B. Spagnolo, Phys. Rev. E 81, 051123 (2010) ADSCrossRefGoogle Scholar
  7. 7.
    W. Horsthemke, R. Lefever, Noise-Induced Transitions (Springer, Berlin, 1984) Google Scholar
  8. 8.
    P. Yung, P. Talkner, Phys. Rev. E 51, 2640 (1995) ADSGoogle Scholar
  9. 9.
    M.I. Dykman, V.N. Smelyanskiy, D.G. Luchinsky, R. Mannella, P.V.E. McClintock, N.D. Stein, Int. J. Bifurc. Chaos 08, 747 (1998) CrossRefGoogle Scholar
  10. 10.
    S.L. Ginzburg, M.A. Pustovoit, Phys. Rev. Lett. 80, 4840 (1998) ADSCrossRefGoogle Scholar
  11. 11.
    P.S. Landa, P.V.E. McClintock, Phys. Rep. 323, 1 (2000) ADSCrossRefGoogle Scholar
  12. 12.
    H. Wang, K. Zhang, Q. Ouyang, Phys. Rev. E 74, 036210 (2006) ADSCrossRefGoogle Scholar
  13. 13.
    V.S. Anishchenko, V.V. Astakhov, A.B. Neiman, T.E. Vadivasova, L. Schimansky-Geier, Nonlinear Dynamics of Chaotic and Stochastic Systems, Tutorial and Modern Development (Springer-Verlag, Berlin, 2007) Google Scholar
  14. 14.
    D. Valenti, G. Augello, B. Spagnolo, Eur. Phys. J. B 65, 443 (2008) ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    T. Prager, A.B. Neiman, L. Schimansky-Geier, Eur. Phys. J. B 69, 119 (2009) ADSCrossRefGoogle Scholar
  16. 16.
    M. Gitterman, J. Modern Phys. 4, 94 (2013) ADSCrossRefGoogle Scholar
  17. 17.
    A.N. Pisarchik, I.A. Bashkirtseva, L.B. Ryashko, Eur. Phys. J. Special Topics 224, 1477 (2015) ADSCrossRefGoogle Scholar
  18. 18.
    Z. Chen, X. Liu, Commun. Nonlinear Sci. Numer. Simulat. 48, 454 (2017) ADSCrossRefGoogle Scholar
  19. 19.
    Y. Xu, J.Z. Ma, H.Y. Wang, Y.G. Li, J. Kurths, Eur. Phys. J. B 90, 194 (2017) ADSCrossRefGoogle Scholar
  20. 20.
    C.W. Gardiner, Handbook of Stochastic Methods for Physics, Chemistry, and the Natural Sciences (Springer-Verlag, Berlin, 1983) Google Scholar
  21. 21.
    M.I. Freidlin, A.D. Wentzell, Random Perturbations of Dynamical Systems (Springer, Berlin, 1984) Google Scholar
  22. 22.
    I. Bashkirtseva, L. Ryashko, Chaos 21, 047514 (2011) ADSCrossRefGoogle Scholar
  23. 23.
    V. Danylenko, S. Skurativskyi, Eur. Phys. J. B 87, 218 (2014) ADSCrossRefGoogle Scholar
  24. 24.
    I. Bashkirtseva, L. Ryashko, Electron. J. Differ. Equations 2016, 1 (2016) Google Scholar
  25. 25.
    I. Bashkirtseva, L. Ryashko, T. Ryazanova, Eur. Phys. J. B 90, 161 (2017) ADSCrossRefGoogle Scholar
  26. 26.
    I. Bashkirtseva, L. Ryashko, Theor. Popul. Biol. 115, 61 (2017) CrossRefGoogle Scholar
  27. 27.
    B. Dennis, Nat. Res. Model. 3, 481 (1989) CrossRefGoogle Scholar
  28. 28.
    L. Ridolfi, P. D’Odorico, F. Laio, Noise-Induced Phenomena in the Environmental Sciences (Cambridge University Press, Cambridge, 2011) Google Scholar
  29. 29.
    G. Roth, S.J. Schreiber, J. Biol. Dyn. 8, 187 (2014) MathSciNetCrossRefGoogle Scholar
  30. 30.
    S. Ciuchi, F. de Pasquale, B. Spagnolo, Phys. Rev. E 47, 3915 (1993) ADSCrossRefGoogle Scholar
  31. 31.
    D. Valenti, A. Fiasconaro, B. Spagnolo, Acta Phys. Pol. B 35, 1481 (2004) ADSGoogle Scholar
  32. 32.
    I. Bashkirtseva, L. Ryashko, Eur. Phys. J. B 89, 165 (2016) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Ural Federal UniversityEkaterinburgRussia

Personalised recommendations