Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Kinetic models for optimal control of wealth inequalities

Abstract

We introduce and discuss optimal control strategies for kinetic models for wealth distribution in a simple market economy, acting to minimize the variance of the wealth density among the population. Our analysis is based on a finite time horizon approximation, or model predictive control, of the corresponding control problem for the microscopic agents’ dynamic and results in an alternative theoretical approach to the taxation and redistribution policy at a global level. It is shown that in general the control is able to modify the Pareto index of the stationary solution of the corresponding Boltzmann kinetic equation, and that this modification can be exactly quantified. Connections between previous Fokker–Planck based models for taxation-redistribution policies and the present approach are also discussed.

References

  1. 1.

    T. Piketty,Capital in the Twenty-First Century (Harvard University Press, Cambridge, MA, 2013)

  2. 2.

    P. Degond, J.-G. Liu, J. Stat. Phys.  154, 751 (2014)

  3. 3.

    B. Düring, D. Matthes, G. Toscani, Phys. Rev. E 78, 056103 (2008)

  4. 4.

    B. Düring, D. Matthes and G. Toscani. A Boltzmann-type approach to the formation of wealth distribution curves. Riv. Mat. Univ. Parma (8) 1, 199 (2009)

  5. 5.

    L. Pareschi, G. Toscani,Interacting Multiagent Systems: Kinetic Equations and Monte Carlo Methods (Oxford University Press, Oxford, UK, 2014)

  6. 6.

    J. Angle, Soc. Forces  65, 293 (1986)

  7. 7.

    E. Scalas, U. Garibaldi, S. Donadio, Eur. Phys. J. B 53, 267 (2006)

  8. 8.

    A. Drǎgulescu, V. Yakovenko, Eur. Phys. J. B 17, 723 (2000)

  9. 9.

    C. Cercignani, inThe Boltzmann Equation and Its Applications (Springer Series in Applied Mathematical Sciences, New York, 1988), Vol. 67

  10. 10.

    C. Cercignani, R. Illner, M. Pulvirenti, inThe Mathematical Theory of Dilute Gases (Springer Series in Applied Mathematical Sciences, New York, 1994), Vol. 106

  11. 11.

    V. Pareto,Cours d’économie politique, Tome II Livre III (F. Pichon Imprimeur-Éditeur, Paris, France, 1897)

  12. 12.

    S. Cordier, L. Pareschi, G. Toscani, J. Stat. Phys.  120, 253 (2005)

  13. 13.

    A. Chakraborti, Int. J. Mod. Phys. C 13, 1315 (2002)

  14. 14.

    A. Chakraborti, B.K. Chakrabarti, Eur. Phys. J. B 17, 167 (2000)

  15. 15.

    M. Bisi, Boll. Unione Mat. Ital.  10, 143 (2017)

  16. 16.

    M. Bisi, G. Spiga, G. Toscani, Commun. Math. Sci. 7, 901 (2009)

  17. 17.

    G. Toscani, Europhys. Lett. 88, 10007 (2009)

  18. 18.

    L. Pareschi, G. Toscani, Philos. Trans. R. Soc. A  372, 20130396 (2017)

  19. 19.

    B. Düring, G. Toscani, Physica A 384, 493 (2007)

  20. 20.

    G. Toscani, Rend. Lincei Mat. Appl.  28, 451 (2017)

  21. 21.

    E. Perversi, E. Regazzini, Math. Models Methods Appl. Sci.  26, 1735 (2016)

  22. 22.

    G. Albi, M. Herty, L. Pareschi, Commun. Math. Sci. 13, 1407 ( 2015)

  23. 23.

    G. Albi, L. Pareschi, M. Zanella, Philos. Trans. R. Soc. A  372, 20140138 (2014)

  24. 24.

    G. Albi, L. Pareschi, G. Toscani, M. Zanella, Recent advances in opinion modeling: control and social influence, in Active Particles, Vol. 1: Theory, Models, Applications, edited by N. Bellomo, P. Degond, E. Tadmor (Birkhäuser, Boston, 2017), Chap. 2, pp. 49–98

  25. 25.

    M. Krstic, I. Kanellakopoulos, P.V. Kokotovic,Nonlinear and Adaptive Control Design (John Wiley and Sons Inc., New York, 1995)

  26. 26.

    E. D. Sontag, Mathematical control theory, inTexts in Applied Mathematics, 2nd edn. (Springer-Verlag, New York, 1998), Vol. 6

  27. 27.

    M. Herty, S. Steffensen, L. Pareschi, Netw. Heterog. Media 10, 699 (2015)

  28. 28.

    E. Camacho, C. Bordons,Model Predictive Control (Springer, USA, 2004)

  29. 29.

    D. Matthes, G. Toscani, J. Stat. Phys.  130, 1087 (2008)

  30. 30.

    A. Devitt-Lee, H. Wang, J. Li, B. Boghosian, SIAM J.  Appl. Math.  78, 996 (2017)

  31. 31.

    J.F. Bouchaud, M. Mézard, Physica A 282, 536 (2000)

Download references

Author information

Correspondence to Bertram Düring.

Rights and permissions

Open Access This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://doi.org/creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Düring, B., Pareschi, L. & Toscani, G. Kinetic models for optimal control of wealth inequalities. Eur. Phys. J. B 91, 265 (2018). https://doi.org/10.1140/epjb/e2018-90138-1

Download citation

Keywords

  • Statistical and Nonlinear Physics