Advertisement

Transmission of the spin-spin coupling constants through hydrogen bonds in ammonia clusters

  • Jesús San Fabián
  • Salama Omar
  • José M. García de la Vega
Regular Article
Part of the following topical collections:
  1. Topical issue: Special issue in honor of Hardy Gross

Abstract

Spin-spin coupling constants are reported using six ab initio and fifteen DFT methods for dimers and larger clusters of ammonia. An analysis of components (Fermi contact, spin dipole, paramagnetic spin-orbit, and diamagnetic spin-orbit) of more relevant coupling constants 1JNH, 1hJNH′ and 2hJNN has been carried out. Fermi contact is the dominant term in the total value for all constants. For dimers, a relationship between the addition of direct and intermolecular coupling constants gives the direct constants of monomer. From the comparison of all ab initio and DFT methods for dimers, SOPPA(CCSD) and S55VWN5 methods are, respectively, more reliable taking into account their accuracy and the computing time. Both methods are employed for the analysis of the transmission of coupling constants through the hydrogen bond for ammonia clusters. A linear relation between the intermolecular constants 1hJNH′ and the length of the hydrogen bond is found.

Supplementary material

10051_2018_90118_MOESM1_ESM.pdf (176 kb)
Transmission of the spin-spin coupling constants through hydrogen bonds in ammonia clusters (Supplementary material)

References

  1. 1.
    J.W. Erisman, M.A. Sutton, J. Galloway, Z. Klimont, W. Winiwarter, Nat. Geosci. 1, 636 (2008) CrossRefADSGoogle Scholar
  2. 2.
    G.A. Jeffrey, W. Saenger, Hydrogen bonding in biology and chemistry (Springer-Verlag, Berlin, 1991) Google Scholar
  3. 3.
    S.J. Grabowski, Ed., Hydrogen bonding: new insights (Springer, Dordrecht, 2006) Google Scholar
  4. 4.
    S. Twagirayezu, G.E. Hall, T.J. Sears, J. Chem. Phys. 145, 144302 (2016) CrossRefADSGoogle Scholar
  5. 5.
    A. Scherrer, F. Agostini, D. Sebastiani, E.K.U. Gross, Phys. Rev. X 7, 031035 (2017) Google Scholar
  6. 6.
    G.A. Jeffrey, An introduction to hydrogen bonding (Oxford University Press, New York, 1997) Google Scholar
  7. 7.
    J.A. Odutola, T.R. Dyke, J. Howard, J.S. Muenter, J. Chem. Phys. 70, 4884 (1979) CrossRefADSGoogle Scholar
  8. 8.
    K. Hirao, T. Fujikawa, H. Konishi, S. Yamabe, Chem.Phys. Lett. 104, 184 (1985) CrossRefADSGoogle Scholar
  9. 9.
    D.D. Nelson Jr., G.T. Fraser, W. Klemperer, F. Lovas, R.D. Suenram, J. Chem. Phys. 83, 6201 (1979) CrossRefADSGoogle Scholar
  10. 10.
    D.D. Nelson Jr., G.T. Fraser, W. Klemperer, F. Lovas, R.D. Suenram, J. Chem. Phys. 87, 6364 (1987) CrossRefADSGoogle Scholar
  11. 11.
    M. Snels, R. Fantoni, R. Sanders, W.L. Meerts, Chem. Phys. 115, 79 (1987) CrossRefADSGoogle Scholar
  12. 12.
    B. Heijmen, A. Bizzarri, S. Stolte, J. Reuss, Chem. Phys. 126, 201 (1988) CrossRefADSGoogle Scholar
  13. 13.
    H.D. Barth, F. Huisken, J. Chem. Phys. 87, 2549 (1987) CrossRefADSGoogle Scholar
  14. 14.
    B. Heijmen, A. Bizzarri, S. Stolte, J. Reuss, Chem. Phys. 126, 213 (1988) CrossRefGoogle Scholar
  15. 15.
    J.C. Greer, R. Ahlrichs, I.V. Hertel, Chem. Phys. 133, 191 (1989) CrossRefADSGoogle Scholar
  16. 16.
    D.M. Hassett, C.J. Marsden, B. Smith, Chem. Phys. Lett. 183, 449 (1991) CrossRefADSGoogle Scholar
  17. 17.
    J.G. Loeser, C.A. Schmuttenmaer, R.C. Cohen, M.J. Elrod, D.W. Steyert, R.J. Saykally, R.E. Bumgarnefl, G.A. Blake, J. Chem. Phys. 97, 4727 (1992) CrossRefADSGoogle Scholar
  18. 18.
    J.W.I. van Bladel, A. van der Avoird, P.E.S. Wormer, R.J. Saykally, J. Chem. Phys. 97, 4750 (1992) CrossRefADSGoogle Scholar
  19. 19.
    F.M. Tao, W. Klemperer, J. Chem. Phys. 99, 5976 (1993) CrossRefADSGoogle Scholar
  20. 20.
    E.H.T. Olthof, A. Van der Avoird, P.E.S. Wormer, J. Chem. Phys. 101, 8430 (1994) CrossRefADSGoogle Scholar
  21. 21.
    M. Diraison, G.J. Martyna, M.E. Tuckerman, J. Chem. Phys. 101, 1096 (1999) CrossRefADSGoogle Scholar
  22. 22.
    J.S. Lee, S.Y. Park, J. Chem. Phys. 112, 230 (2000) CrossRefADSGoogle Scholar
  23. 23.
    T. Beu, U. Buck, J. Chem. Phys. 114, 7848 (2001) CrossRefADSGoogle Scholar
  24. 24.
    T. Beu, U. Buck, J. Chem. Phys. 114, 7853 (2001) CrossRefADSGoogle Scholar
  25. 25.
    S. Kulkarni, R. Pathak, Chem. Phys. Lett. 336, 278 (2001) CrossRefADSGoogle Scholar
  26. 26.
    N. Huang, A.D. MacKerell Jr., J. Phys. Chem. A 106, 7820 (2002) CrossRefGoogle Scholar
  27. 27.
    A.D. Boese, A. Chandra, J.M.L. Martin, D. Marx, J. Chem. Phys. 119, 5965 (2003) CrossRefADSGoogle Scholar
  28. 28.
    T. Beu, U. Buck, Eur. Phys. J. D 27, 223 (2003) CrossRefADSGoogle Scholar
  29. 29.
    F.M. Abu-Awwad, THEOCHEM 683, 5763 (2004) CrossRefGoogle Scholar
  30. 30.
    Y. Liu, M.A. Suhm, P. Bostschwina, Phys. Chem. Chem. Phys. 6, 4642 (2004) CrossRefGoogle Scholar
  31. 31.
    M. Jetzki, A. Bonnamy, R. Signorell, J. Chem. Phys. 120, 11775 (2004) CrossRefADSGoogle Scholar
  32. 32.
    J. Altmann, M. Govender, T. Ford, Mol. Phys. 103, 949 (2005) CrossRefADSGoogle Scholar
  33. 33.
    C. Steinbach, U. Buck, T.A. Beu, J. Chem. Phys. 125, 133403 (2006) CrossRefADSGoogle Scholar
  34. 34.
    P.E. Janeiro-Barral, M. Mella, J. Phys. Chem. 110, 11244 (2006) CrossRefGoogle Scholar
  35. 35.
    M.N. Slipchenko, K.E. Kuyanov, B.G. Sartakov, A.F. Vilesov, J. Chem. Phys. 124, 241101 (2006) CrossRefADSGoogle Scholar
  36. 36.
    M.N. Slipchenko, B.G. Sartakov, A.F. Vilesov, S.S. Xantheas, J. Phys. Chem. A 111, 7460 (2007) CrossRefGoogle Scholar
  37. 37.
    P.E. Janeiro-Barral, M. Mella, E. Curotto, J. Phys. Chem. A 112, 2888 (2008) CrossRefGoogle Scholar
  38. 38.
    M.N. Slipchenko, B.G. Sartakov, A.F. Vilesov, J. Chem. Phys. 128, 134509 (2008) CrossRefADSGoogle Scholar
  39. 39.
    Y. Matsumoto, K. Honma, Chem. Phys. Lett. 490, 9 (2010) CrossRefADSGoogle Scholar
  40. 40.
    C. Lubombo, E. Curotto, P.E. Janeiro-Barral, M. Mella, J. Chem. Phys. 131, 034312 (2009) CrossRefADSGoogle Scholar
  41. 41.
    L. Yu, Z. Yang., J. Chem. Phys. 132, 174109 (2010) CrossRefADSGoogle Scholar
  42. 42.
    M. Katada, R. Shishido, A. Fujii, Phys. Chem. Chem. Phys. 16, 7595 (2014) CrossRefGoogle Scholar
  43. 43.
    A. Malloum, J.J. Fifen, Z. Dhaouadi, S.G.N. Engo, N.E. Jaidane, Phys. Chem. Chem. Phys. 17, 29226 (2015) CrossRefGoogle Scholar
  44. 44.
    S.R. Gadre, S.D. Yeole, N. Sahu, Chem. Rev. 114, 12132 (2014) CrossRefGoogle Scholar
  45. 45.
    T. Helgaker, M. Jaszuński, K. Ruud, Chem. Rev. 99, 293 (1999) CrossRefGoogle Scholar
  46. 46.
    L.B. Krivdin, R.H. Contreras, Annu. Rep. NMR Spectrosc. 61, 133 (2007) CrossRefGoogle Scholar
  47. 47.
    T. Helgaker, M. Jaszuński, M. Pecul, Prog. Nucl. Magn. Reson. Spectrosc. 53, 249 (2008) CrossRefGoogle Scholar
  48. 48.
    Y.Y. Rusakov, L.B. Krivdin, Russ. Chem. Rev. 82, 99 (2013) CrossRefADSGoogle Scholar
  49. 49.
    R.M. Gester, H.C. Georg, S. Canuto, M.C. Caputo, P.F. Provasi, J. Phys. Chem. A 113, 14936 (2009) CrossRefGoogle Scholar
  50. 50.
    A. Yachmenev, S.N. Yurchenko, I. Paidarov, P. Jensen, W. Thiel, S.P.A. Sauer, J. Chem. Phys. 132, 114305 (2016) CrossRefADSGoogle Scholar
  51. 51.
    M. Pecul, J. Sadlej, Chem. Phys. Lett. 360, 272 (2002) CrossRefADSGoogle Scholar
  52. 52.
    R.E. Hubbard, M.K. Haider, Hydrogen bonds in proteins: role and strength, in Encyclopedia of life sciences (John Wiley & Sons Ltd, Chichester, 2010) Google Scholar
  53. 53.
    J. San Fabián, S. Omar, J.M. García de la Vega, J. Chem. Phys. 145, 084301 (2016) CrossRefADSGoogle Scholar
  54. 54.
    J.M. García de la Vega, S. Omar, J. San Fabián, J. Mol. Model. 23, 134 (2017) CrossRefGoogle Scholar
  55. 55.
    N.F. Ramsey, Phys. Rev. 91, 303 (1953) CrossRefADSGoogle Scholar
  56. 56.
    J. San Fabián, E. Díez, J.M. García de la Vega, R. Suardíaz, J. Chem. Phys. 128, 084108 (2008) CrossRefADSGoogle Scholar
  57. 57.
    S.A. Perera, H. Sekino, R.J. Bartlett, J. Chem. Phys. 101, 2186 (1994) CrossRefADSGoogle Scholar
  58. 58.
    M.E. Harding, T. Metzroth, , J. Gauss, J. Chem. Theory Comput. 4, 64 (2008) CrossRefGoogle Scholar
  59. 59.
    E. Nielsen, P. Jørgensen, J. Oddershede, J. Chem. Phys. 73, 6238 (1980) CrossRefADSGoogle Scholar
  60. 60.
    J. Geertsen, J. Oddershede, Chem. Phys. 90, 301 (1984) CrossRefADSGoogle Scholar
  61. 61.
    T. Enevoldsen, J. Oddershede, S.P.A. Sauer, Theor. Chim. Acta 100, 275 (1998) CrossRefGoogle Scholar
  62. 62.
    H. Kjær, S.P. Sauer, J. Kongsted, J. Chem. Phys. 133, 144106 (2010) CrossRefADSGoogle Scholar
  63. 63.
    O. Christiansen, H. Koch, P. Jørgensen, Chem. Phys. Lett. 243, 409 (1995) CrossRefADSGoogle Scholar
  64. 64.
    S.P.A. Sauer, J. Phys. B: At. Mol. Opt. Phys. 30, 3773 (1997) ADSGoogle Scholar
  65. 65.
    A.D. Becke, Phys. Rev. A 38, 3098 (1988) CrossRefADSGoogle Scholar
  66. 66.
    C. Lee, W. Yang, R.G. Parr, Phys. Rev. B. 37, 785 (1988) CrossRefADSGoogle Scholar
  67. 67.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) CrossRefADSGoogle Scholar
  68. 68.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 78, 1396 (1997) CrossRefADSGoogle Scholar
  69. 69.
    A.D. Becke, J. Chem. Phys. 98, 5648 (1993) CrossRefADSGoogle Scholar
  70. 70.
    A. Austin, G. Petersson, M.J. Frisch, F.J. Dobe, G. Scalmani, K. Throssell, J. Chem. Theory Comput. 8, 4989 (2012) CrossRefGoogle Scholar
  71. 71.
    Y. Zhao, D.G. Truhlar, J. Chem. Phys. 125, 194101 (2006) CrossRefADSGoogle Scholar
  72. 72.
    Y. Zhao, D.G. Truhlar, Theor. Chem. Acc. 120, 215 (2008) CrossRefGoogle Scholar
  73. 73.
    S. Grimme, J. Comput. Chem. 27, 1787 (2006) CrossRefGoogle Scholar
  74. 74.
    J.D. Chai, M. Head-Gordon, Phys. Chem. Chem. Phys. 10, 6615 (2008) CrossRefGoogle Scholar
  75. 75.
    J.D. Chai, M. Head-Gordon, J. Chem. Phys. 128, 084106 (2008) CrossRefADSGoogle Scholar
  76. 76.
    T. Yanai, D.P. Tew, N.C. Handy, Chem. Phys. Lett. 393, 51 (2004) CrossRefADSGoogle Scholar
  77. 77.
    J. San Fabián, J.M. García de la Vega, E. San Fabián, J. Chem. Theory Comput. 10, 4938 (2014) CrossRefGoogle Scholar
  78. 78.
    J.M. García de la Vega, J. San Fabián, Mol. Phys. 113, 1924 (2015) Google Scholar
  79. 79.
    J.C. Slater, The self-consistent field for molecular and solids, in Quantum theory of molecular and solids (McGraw-Hill, New York, 1974), Vol. 4 Google Scholar
  80. 80.
    T.H. Dunning, Jr., J. Chem. Phys. 90, 1007 (1989) CrossRefADSGoogle Scholar
  81. 81.
    D.E. Woon, T.H. Dunning, Jr., J. Chem. Phys. 103, 4572 (1995) CrossRefADSGoogle Scholar
  82. 82.
    M.J. Frisch, et al., Gaussian 09, revision D.01, Gaussian, Inc., Wallingford CT (2013) Google Scholar
  83. 83.
    P.F. Provasi, G.A. Aucar, S.P.A. Sauer, J. Chem. Phys. 115, 1324 (2001) CrossRefADSGoogle Scholar
  84. 84.
    Dalton, a molecular electronic structure program, release dalton2013.4 (2013). Available at http://daltonprogram.org Google Scholar
  85. 85.
    J.F. Stanton et al., ACES II is a program product of the Quantum Theory Project, University of Florida. Integral packages included are VMOL (J. Almlöf and P.R. Taylor); VPROPS (P. Taylor); ABACUS (T. Helgaker, H.J. Aa. Jensen, P. Jørgensen, J. Olsen and P.R. Taylor); HONDO/GAMESS (M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.J. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S. Su, T.L. Windus, M. Dupuis and J.A. Montgomery) (2006) Google Scholar
  86. 86.
    M. Alei Jr., A.E. Florin, W.M. Litchman, J.F. O’Brien, J. Phys. Chem. 75, 932 (1971) CrossRefGoogle Scholar
  87. 87.
    R.E. Wasylishen, J.O. Friedrich, Can. J. Chem. 65, 2238 (1987) CrossRefGoogle Scholar
  88. 88.
    H. Fukui, K. Miura, H. Matsuda, T. Baba, J. Chem. Phys. 97, 2299 (1992) CrossRefADSGoogle Scholar
  89. 89.
    M. Pecul, J. Sadlej, T. Helgaker, Chem. Phys. Lett. 372, 476 (2003) CrossRefADSGoogle Scholar
  90. 90.
    T. Helgaker, O.B. Lutnæs, M. Jaszuński, J. Chem. Theory Comput. 3, 86 (2007) CrossRefGoogle Scholar
  91. 91.
    O.B. Lutnaes, T. Helgaker, M. Jaszuński, Mol. Phys. 108, 2579 (2010) CrossRefADSGoogle Scholar
  92. 92.
    E.D. Glendening, A.E. Reed, J.E. Carpenter, F. Weinhold, NBO version 3.1. Theoretical Chemistry Institute, University of Wisconsin, Madison, Wisconsin, USA (1993) Google Scholar
  93. 93.
    S.J. Wilkens, W.M. Westler, J.L. Markley, F. Weinhold, J. Am. Chem. Soc. 123, 12026 (2001) CrossRefGoogle Scholar
  94. 94.
    J.M. García de la Vega, J. San Fabián, in High resolution NMR spectroscopy, edited by R.H. Contreras (Elsevier, 2013), Vol. 3, Chap. 6, p. 161 Google Scholar
  95. 95.
    A.E. Shchavlev, A.N. Pankratov, V.B. Borodulin, O.A. Chaplygina, J. Phys. Chem. A 109, 10982 (2005) CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jesús San Fabián
    • 1
  • Salama Omar
    • 1
  • José M. García de la Vega
    • 1
  1. 1.Departamento de Química Física Aplicada, Universidad Autónoma de MadridMadridSpain

Personalised recommendations