Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

The family of topological Hall effects for electrons in skyrmion crystals

Abstract

Hall effects of electrons can be produced by an external magnetic field, spin–orbit coupling or a topologically non-trivial spin texture. The topological Hall effect (THE) – caused by the latter – is commonly observed in magnetic skyrmion crystals. Here, we show analogies of the THE to the conventional Hall effect (HE), the anomalous Hall effect (AHE), and the spin Hall effect (SHE). In the limit of strong coupling between conduction electron spins and the local magnetic texture the THE can be described by means of a fictitious, “emergent” magnetic field. In this sense the THE can be mapped onto the HE caused by an external magnetic field. Due to complete alignment of electron spin and magnetic texture, the transverse charge conductivity is linked to a transverse spin conductivity. They are disconnected for weak coupling of electron spin and magnetic texture; the THE is then related to the AHE. The topological equivalent to the SHE can be found in antiferromagnetic skyrmion crystals. We substantiate our claims by calculations of the edge states for a finite sample. These states reveal in which situation the topological analogue to a quantized HE, quantized AHE, and quantized SHE can be found.

Change history

  • 22 October 2018

    The figures were missing in the online version of the published article. This erratum provides the correct online file. The Publisher apologizes for the inconvenience.

  • 22 October 2018

    The figures were missing in the online version of the published article. This erratum provides the correct online file. The Publisher apologizes for the inconvenience.

  • 22 October 2018

    The figures were missing in the online version of the published article. This erratum provides the correct online file. The Publisher apologizes for the inconvenience.

  • 22 October 2018

    The figures were missing in the online version of the published article. This erratum provides the correct online file. The Publisher apologizes for the inconvenience.

  • 22 October 2018

    The figures were missing in the online version of the published article. This erratum provides the correct online file. The Publisher apologizes for the inconvenience.

References

  1. 1.

    E.H. Hall, Am. J. Math. 2, 287 (1879)

  2. 2.

    N. Nagaosa, J. Sinova, S. Onoda, A. MacDonald, N. Ong, Rev. Mod. Phys. 82, 1539 (2010)

  3. 3.

    P. Bruno, V. Dugaev, M. Taillefumier, Phys. Rev. Lett. 93, 096806 (2004)

  4. 4.

    M.V. Berry, in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences (The Royal Society, London, 1984), Vol. 392, pp. 45–57

  5. 5.

    L. Landau, Z. Phys. 64, 629 (1930)

  6. 6.

    D.R. Hofstadter, Phys. Rev. B 14, 2239 (1976)

  7. 7.

    K.V. Klitzing, G. Dorda, M. Pepper, Phys. Rev. Lett. 45, 494 (1980)

  8. 8.

    C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, S.-C. Zhang, Phys. Rev. Lett. 101, 146802 (2008)

  9. 9.

    C.-Z. Chang et al., Science 340, 167 (2013)

  10. 10.

    M. D’yakonov, V. Perel, Sov. J. Exp. Theor. Phys. Lett. 13, 467 (1971)

  11. 11.

    Y. Kato, R. Myers, A. Gossard, D. Awschalom, Science 306, 1910 (2004)

  12. 12.

    C.L. Kane, E.J. Mele, Phys. Rev. Lett. 95, 226801 (2005)

  13. 13.

    B.A. Bernevig, T.L. Hughes, S.-C. Zhang, Science 314, 1757 (2006)

  14. 14.

    A. Neubauer, C. Pfleiderer, B. Binz, A. Rosch, R. Ritz, P. Niklowitz, P. Böni, Phys. Rev. Lett. 102, 186602 (2009)

  15. 15.

    T. Schulz, R. Ritz, A. Bauer, M. Halder, M. Wagner, C. Franz, C. Pfleiderer, K. Everschor, M. Garst, A. Rosch, Nat. Phys. 8, 301 (2012)

  16. 16.

    N. Kanazawa, Y. Onose, T. Arima, D. Okuyama, K. Ohoyama, S. Wakimoto, K. Kakurai, S. Ishiwata, Y. Tokura, Phys. Rev. Lett. 106, 156603 (2011)

  17. 17.

    M. Lee, W. Kang, Y. Onose, Y. Tokura, N. Ong, Phys. Rev. Lett. 102, 186601 (2009)

  18. 18.

    Y. Li, N. Kanazawa, X. Yu, A. Tsukazaki, M. Kawasaki, M. Ichikawa, X. Jin, F. Kagawa, Y. Tokura, Phys. Rev. Lett. 110, 117202 (2013)

  19. 19.

    K. Hamamoto, M. Ezawa, N. Nagaosa, Phys. Rev. B 92, 115417 (2015)

  20. 20.

    G. Yin, Y. Liu, Y. Barlas, J. Zang, R.K. Lake, Phys. Rev. B 92, 024411 (2015)

  21. 21.

    J.L. Lado, J. Fernández-Rossier, Phys. Rev. B 92, 115433 (2015)

  22. 22.

    B. Göbel, A. Mook, J. Henk, I. Mertig, Phys. Rev. B 95, 094413 (2017)

  23. 23.

    B. Göbel, A. Mook, J. Henk, I. Mertig, New J. Phys. 19, 063042 (2017)

  24. 24.

    P.B. Ndiaye, C.A. Akosa, A. Manchon, Phys. Rev. B 95, 064426 (2017)

  25. 25.

    T.H.R. Skyrme, Nucl. Phys. 31, 556 (1962)

  26. 26.

    A. Bogdanov, D. Yablonskii, Zh. Eksp. Teor. Fiz 95, 182 (1989)

  27. 27.

    A. Bogdanov, A. Hubert, J. Magn. Magn. Mater. 138, 255 (1994)

  28. 28.

    U. Rößler, A. Bogdanov, C. Pfleiderer, Nature 442, 797 (2006)

  29. 29.

    S. Mühlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, P. Böni, Science 323, 915 (2009)

  30. 30.

    N. Nagaosa, Y. Tokura, Nat. Nanotechnol. 8, 899 (2013)

  31. 31.

    K. Everschor-Sitte, M. Sitte, J. Appl. Phys. 115, 172602 (2014)

  32. 32.

    X. Yu, N. Kanazawa, Y. Onose, K. Kimoto, W. Zhang, S. Ishiwata, Y. Matsui, Y. Tokura, Nat. Mater. 10, 106 (2011)

  33. 33.

    S. Heinze, K. Von Bergmann, M. Menzel, J. Brede, A. Kubetzka, R. Wiesendanger, G. Bihlmayer, S. Blügel, Nat. Phys. 7, 713 (2011)

  34. 34.

    B. Göbel, A. Mook, J. Henk, I. Mertig, Phys. Rev. B 96, 060406(R) (2017)

  35. 35.

    P.M. Buhl, F. Freimuth, S. Blügel, Y. Mokrousov, Phys. Status Solidi Rapid Res. Lett. 11, 1700007 (2017)

  36. 36.

    C.A. Akosa, O. Tretiakov, G. Tatara, A. Manchon, arXiv:1709.02931 (2017)

  37. 37.

    M. Gradhand, D. Fedorov, F. Pientka, P. Zahn, I. Mertig, B. Györffy, J. Phys.: Condens. Matter 24, 213202 (2012)

  38. 38.

    B. Göbel, A. Mook, J. Henk, I. Mertig, arXiv:1802.06411 (2018)

  39. 39.

    Y. Hatsugai, T. Fukui, H. Aoki, Phys. Rev. B 74, 205414 (2006)

  40. 40.

    M. Arai, Y. Hatsugai, Phys. Rev. B 79, 075429 (2009)

  41. 41.

    Y. Hatsugai, Phys. Rev. B 48, 11851 (1993)

  42. 42.

    Y. Hatsugai, Phys. Rev. Lett. 71, 36973700 (1993)

  43. 43.

    J. Henk, W. Schattke, Comp. Phys. Commun. 77, 69 (1993)

  44. 44.

    A. Bödicker, W. Schattke, J. Henk, R. Feder, J. Phys.: Condens. Matter 6, 1927 (1994)

  45. 45.

    M.-C. Chang, Q. Niu, Phys. Rev. Lett. 75, 1348 (1995)

  46. 46.

    M.-C. Chang, Q. Niu, Phys. Rev. B 53, 7010 (1996)

  47. 47.

    I. Dana, Y. Avron, J. Zak, J. Phys. C: Solid State Phys. 18, L679 (1985)

  48. 48.

    D. Thouless, M. Kohmoto, M. Nightingale, M. Den Nijs, Phys. Rev. Lett. 49, 405 (1982)

  49. 49.

    X. Zhang, Y. Zhou, M. Ezawa, Sci. Rep. 6, 24795 (2016)

  50. 50.

    J. Barker, O.A. Tretiakov, Phys. Rev. Lett. 116, 147203 (2016)

  51. 51.

    X. Zhang, Y. Zhou, M. Ezawa, Nat. Commun. 7, 10293 (2016)

Download references

Author information

Correspondence to Börge Göbel.

Additional information

Contribution to the Topical Issue “Special issue in honor of Hardy Gross”, edited by C.A. Ullrich, F.M.S. Nogueira, A. Rubio, and M.A.L. Marques.

Rights and permissions

Open Access This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Göbel, B., Mook, A., Henk, J. et al. The family of topological Hall effects for electrons in skyrmion crystals. Eur. Phys. J. B 91, 179 (2018). https://doi.org/10.1140/epjb/e2018-90090-0

Download citation