Constructing null networks for community detection in complex networks
- 77 Downloads
Abstract
Communities are virtually ubiquitous in real-world networks, and the statistic of modularity index Q is the classical measurement for community detection algorithms. However, the relationship between the modularity property and network multilever micro-scale structures is still not clear. In this paper, we study community detection results both in artificial and real-life complex networks by constructing different order null networks, and the results uncover that how micro-structures (such as degree distribution, assortativity and clustering coefficient) affect community properties. Meanwhile, we also propose two novel null networks (increasing or decreasing community structures) to verify the robustness of different community detection algorithms. Our results indicate that the modularity index Q is not a suitable statistic to measure the weak community property which is widely available in empirical networks. Our findings can not only be used to test the robustness of different community detection methods, but also be helpful to uncover the correlation of network structures between microcosmic and mesoscopic scales.
Keywords
Statistical and Nonlinear PhysicsReferences
- 1.J. Chen, B. Yuan, Bioinformatics 22, 2283 (2006) CrossRefGoogle Scholar
- 2.S. Thakur, M. Dhiman, G. Tell, A.K. Mantha, Cell Biochem. 33, 101 (2015) Google Scholar
- 3.V. Spirin, Leonid A. Mirny, Proc. Natl. Acad. Sci. USA 100, 12123 (2003) ADSCrossRefGoogle Scholar
- 4.T. Furukawa, K. Mori, A. Kazuma, H. Kazuhiro, S. Nobuyuki, Technol. Forecast. 91, 280 (2015) CrossRefGoogle Scholar
- 5.B. Kim, W.J. Kim, D.I. Kim, S.Y. Lee, J. Ind. Microbiol. 42, 339 (2015) Google Scholar
- 6.A.E. Krause, K.A. Frank, D.M. Mason, R.E. Ulanowicz, W.W. Taylor, Nature 426, 282 (2003) ADSCrossRefGoogle Scholar
- 7.D. D’Alelio, S. Libralato, T. Wyatt, D.M. Ribera, Sci. Rep. 6, 21806 (2016) ADSCrossRefGoogle Scholar
- 8.B. Wellman, Soc. Netw. 27, 275 (2005) CrossRefGoogle Scholar
- 9.T. Chakraborty, S. Kumar, N. Ganguly, A. Mukherjee, S. Bhowmick, IEEE Trans. Knowl. 28, 2101 (2016) CrossRefGoogle Scholar
- 10.J. Leskovec, K. Lang, A. Dasgupta, M. Mahoney, in International World Wide Web Conference (WWW) (ACM, US, 2008), pp. 695–704 Google Scholar
- 11.S. Fortunato, Phys. Rep. 486, 75 (2010) ADSMathSciNetCrossRefGoogle Scholar
- 12.X. Li, M.K. Ng, Y. Ye, IEEE Trans. Knowl. 26, 929 (2014) CrossRefGoogle Scholar
- 13.V.D. Blondel, J.L. Guillaume, R. Lambiotte, E. Lefebvre, J. Stat. Mech. 2008, P10008 (2008) CrossRefGoogle Scholar
- 14.A. Clauset, M.E. Newman, C. Moore, Phys. Rev. E 70, 066111 (2004) ADSCrossRefGoogle Scholar
- 15.P. Pons, M. Latapy, in International Symposium on Computer and Information Sciences (Springer-Verlag, Berlin, 2005), pp. 284–293 Google Scholar
- 16.M. Girvan, M.E.J. Newman, Proc. Natl. Acad. Sci. USA 99, 7821 (2001) ADSCrossRefGoogle Scholar
- 17.G. Palla, I. Dernyi, I. Farkas, T. Vicsek, Nature 435, 814 (2005) ADSCrossRefGoogle Scholar
- 18.M. Rosvall, C.T. Bergstrom, Proc. Natl. Acad. Sci. USA 105, 1118 (2007) ADSCrossRefGoogle Scholar
- 19.M.E.J. Newman, Arxiv Phys. 74, 036104 (2006) Google Scholar
- 20.U.N. Raghavan, R. Albert, S. Kumara, Phy. Rev. E 76, 036106 (2007) ADSCrossRefGoogle Scholar
- 21.G. Jia, Z. Cai, M. Musolesi, Y. Wang, A.T. Dan, R.J. Weber, J.K. Heath, S. He, in Learning and Intelligent Optimization, Lect. Notes Comput. Sci. (2012), pp. 71–85 Google Scholar
- 22.J. Xiao, Y.J. Zhang, X.K. Xu, Physica A 503, 762 (2018) ADSCrossRefGoogle Scholar
- 23.R.K. Colwell, D.V. Winkler, in Ecological Communities, Conceptual Issues and the Evidence (Princeton University Press, 1984), pp. 344–359 Google Scholar
- 24.M. Molloy, B. Reed, Comb. Probab. 7, 295 (2000) CrossRefGoogle Scholar
- 25.M. Passamani, A.B. Rylands, Acm Sigcomm Comput. Commun. Rev. 37, 325 (2007) CrossRefGoogle Scholar
- 26.D.J. Watts, S.H. Strogatz, Nature 393, 440 (1998) ADSCrossRefGoogle Scholar
- 27.D. Krioukov, F. Papadopoulos, M. Kitsak, A. Vahdat, Phys. Rev. E 82, 036106 (2010) ADSMathSciNetCrossRefGoogle Scholar
- 28.I. Stanton, A. Pinar, in The Workshop on Algorithm Engineering (SIAM, US, 2010), pp. 151–163 Google Scholar
- 29.K. Shang, M. Small, X.K. Xu, W.S. Yan, EPL 117, 28002 (2017) ADSCrossRefGoogle Scholar
- 30.K. Shang, M. Small, W. Yan, Physica A 469, 767 (2017) ADSCrossRefGoogle Scholar
- 31.P. Mahadevan, D. Krioukov, K. Fall, A. Vahdat, in SIGCOMM‘06 (ACM, 2006), pp. 135–146 Google Scholar
- 32.V. Colizza, A. Flammini, M.A. Serrano, A. Vespignani, Nat. Phys. 2, 110 (2006) CrossRefGoogle Scholar
- 33.J.G. Foster, D.V. Foster, P. Grassberger, M. Paczuski, Proc. Natl. Acad. Sci. USA 107, 10815 (2010) ADSCrossRefGoogle Scholar
- 34.M. Gjoka, M. Kurant, A. Markopoulou, IEEE INFOCOM 12, 1968 (2012) Google Scholar
- 35.C. Orsini, M.M. Dankulov, P. Colomer-de-Simon, A. Jamakovic, P. Mahadevan, A. Vahdat, K.E. Bassler, Z. Toroczkai, M. Boguena, G. Caldarelli, Nat. Commun. 6, 8627 (2015) ADSCrossRefGoogle Scholar
- 36.S. Maslov, K. Sneppen, Science 296, 910 (2002) ADSCrossRefGoogle Scholar
- 37.P. Holme, Phys. Rev. E 71, 046119 (2005) ADSCrossRefGoogle Scholar
- 38.L. Li, Acm Comput. Commun. Rev. 34, 3 (2004) CrossRefGoogle Scholar
- 39.W.W. Zachary, J. Anthropol. Res. 33, 452 (1977) CrossRefGoogle Scholar
- 40.D. Lusseau, K. Schneider, O.J. Boisseau, P. Haase, E. Slooten, S.M. Dawson, Behav. Ecol. 54, 396 (2003) CrossRefGoogle Scholar
- 41.A. Lancichinetti, S. Fortunato, Phys. Rev. E 80, 016118 (2009) ADSCrossRefGoogle Scholar
- 42.R. Guimer, M. Salespardo, L.A.N. Amaral, Phys. Rev. E 70, 025101 (2004) ADSCrossRefGoogle Scholar
- 43.S. Fortunato, M. Barthlemy, Proc. Natl. Acad. Sci. USA 104, 36 (2006) ADSCrossRefGoogle Scholar
- 44.L. Danon, A. Dazguilera, J. Duch, A. Arenas, J. Stat. Mech. 2005, 09008 (2005) CrossRefGoogle Scholar