Advertisement

Constructing null networks for community detection in complex networks

  • Wen-Kuo Cui
  • Ke-Ke Shang
  • Yong-Jian Zhang
  • Jing Xiao
  • Xiao-Ke Xu
Regular Article
  • 55 Downloads

Abstract

Communities are virtually ubiquitous in real-world networks, and the statistic of modularity index Q is the classical measurement for community detection algorithms. However, the relationship between the modularity property and network multilever micro-scale structures is still not clear. In this paper, we study community detection results both in artificial and real-life complex networks by constructing different order null networks, and the results uncover that how micro-structures (such as degree distribution, assortativity and clustering coefficient) affect community properties. Meanwhile, we also propose two novel null networks (increasing or decreasing community structures) to verify the robustness of different community detection algorithms. Our results indicate that the modularity index Q is not a suitable statistic to measure the weak community property which is widely available in empirical networks. Our findings can not only be used to test the robustness of different community detection methods, but also be helpful to uncover the correlation of network structures between microcosmic and mesoscopic scales.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    J. Chen, B. Yuan, Bioinformatics 22, 2283 (2006) CrossRefGoogle Scholar
  2. 2.
    S. Thakur, M. Dhiman, G. Tell, A.K. Mantha, Cell Biochem. 33, 101 (2015) Google Scholar
  3. 3.
    V. Spirin, Leonid A. Mirny, Proc. Natl. Acad. Sci. USA 100, 12123 (2003) ADSCrossRefGoogle Scholar
  4. 4.
    T. Furukawa, K. Mori, A. Kazuma, H. Kazuhiro, S. Nobuyuki, Technol. Forecast. 91, 280 (2015) CrossRefGoogle Scholar
  5. 5.
    B. Kim, W.J. Kim, D.I. Kim, S.Y. Lee, J. Ind. Microbiol. 42, 339 (2015) Google Scholar
  6. 6.
    A.E. Krause, K.A. Frank, D.M. Mason, R.E. Ulanowicz, W.W. Taylor, Nature 426, 282 (2003) ADSCrossRefGoogle Scholar
  7. 7.
    D. D’Alelio, S. Libralato, T. Wyatt, D.M. Ribera, Sci. Rep. 6, 21806 (2016) ADSCrossRefGoogle Scholar
  8. 8.
    B. Wellman, Soc. Netw. 27, 275 (2005) CrossRefGoogle Scholar
  9. 9.
    T. Chakraborty, S. Kumar, N. Ganguly, A. Mukherjee, S. Bhowmick, IEEE Trans. Knowl. 28, 2101 (2016) CrossRefGoogle Scholar
  10. 10.
    J. Leskovec, K. Lang, A. Dasgupta, M. Mahoney, in International World Wide Web Conference (WWW) (ACM, US, 2008), pp. 695–704 Google Scholar
  11. 11.
    S. Fortunato, Phys. Rep. 486, 75 (2010) ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    X. Li, M.K. Ng, Y. Ye, IEEE Trans. Knowl. 26, 929 (2014) CrossRefGoogle Scholar
  13. 13.
    V.D. Blondel, J.L. Guillaume, R. Lambiotte, E. Lefebvre, J. Stat. Mech. 2008, P10008 (2008) CrossRefGoogle Scholar
  14. 14.
    A. Clauset, M.E. Newman, C. Moore, Phys. Rev. E 70, 066111 (2004) ADSCrossRefGoogle Scholar
  15. 15.
    P. Pons, M. Latapy, in International Symposium on Computer and Information Sciences (Springer-Verlag, Berlin, 2005), pp. 284–293 Google Scholar
  16. 16.
    M. Girvan, M.E.J. Newman, Proc. Natl. Acad. Sci. USA 99, 7821 (2001) ADSCrossRefGoogle Scholar
  17. 17.
    G. Palla, I. Dernyi, I. Farkas, T. Vicsek, Nature 435, 814 (2005) ADSCrossRefGoogle Scholar
  18. 18.
    M. Rosvall, C.T. Bergstrom, Proc. Natl. Acad. Sci. USA 105, 1118 (2007) ADSCrossRefGoogle Scholar
  19. 19.
    M.E.J. Newman, Arxiv Phys. 74, 036104 (2006) Google Scholar
  20. 20.
    U.N. Raghavan, R. Albert, S. Kumara, Phy. Rev. E 76, 036106 (2007) ADSCrossRefGoogle Scholar
  21. 21.
    G. Jia, Z. Cai, M. Musolesi, Y. Wang, A.T. Dan, R.J. Weber, J.K. Heath, S. He, in Learning and Intelligent Optimization, Lect. Notes Comput. Sci. (2012), pp. 71–85 Google Scholar
  22. 22.
    J. Xiao, Y.J. Zhang, X.K. Xu, Physica A 503, 762 (2018) ADSCrossRefGoogle Scholar
  23. 23.
    R.K.  Colwell, D.V. Winkler, in Ecological Communities, Conceptual Issues and the Evidence (Princeton University Press, 1984), pp. 344–359 Google Scholar
  24. 24.
    M. Molloy, B. Reed, Comb. Probab. 7, 295 (2000) CrossRefGoogle Scholar
  25. 25.
    M. Passamani, A.B. Rylands, Acm Sigcomm Comput. Commun. Rev. 37, 325 (2007) CrossRefGoogle Scholar
  26. 26.
    D.J. Watts, S.H. Strogatz, Nature 393, 440 (1998) ADSCrossRefGoogle Scholar
  27. 27.
    D. Krioukov, F. Papadopoulos, M. Kitsak, A. Vahdat, Phys. Rev. E 82, 036106 (2010) ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    I. Stanton, A. Pinar, in The Workshop on Algorithm Engineering (SIAM, US, 2010), pp. 151–163 Google Scholar
  29. 29.
    K. Shang, M. Small, X.K. Xu, W.S. Yan, EPL 117, 28002 (2017) ADSCrossRefGoogle Scholar
  30. 30.
    K. Shang, M. Small, W. Yan, Physica A 469, 767 (2017) ADSCrossRefGoogle Scholar
  31. 31.
    P. Mahadevan, D. Krioukov, K. Fall, A. Vahdat, in SIGCOMM‘06 (ACM, 2006), pp. 135–146 Google Scholar
  32. 32.
    V. Colizza, A. Flammini, M.A. Serrano, A. Vespignani, Nat. Phys. 2, 110 (2006) CrossRefGoogle Scholar
  33. 33.
    J.G. Foster, D.V. Foster, P. Grassberger, M. Paczuski, Proc. Natl. Acad. Sci. USA 107, 10815 (2010) ADSCrossRefGoogle Scholar
  34. 34.
    M. Gjoka, M. Kurant, A. Markopoulou, IEEE INFOCOM 12, 1968 (2012) Google Scholar
  35. 35.
    C. Orsini, M.M. Dankulov, P. Colomer-de-Simon, A. Jamakovic, P. Mahadevan, A. Vahdat, K.E. Bassler, Z. Toroczkai, M. Boguena, G. Caldarelli, Nat. Commun. 6, 8627 (2015) ADSCrossRefGoogle Scholar
  36. 36.
    S. Maslov, K. Sneppen, Science 296, 910 (2002) ADSCrossRefGoogle Scholar
  37. 37.
    P. Holme, Phys. Rev. E 71, 046119 (2005) ADSCrossRefGoogle Scholar
  38. 38.
    L. Li, Acm Comput. Commun. Rev. 34, 3 (2004) CrossRefGoogle Scholar
  39. 39.
    W.W. Zachary, J. Anthropol. Res. 33, 452 (1977) CrossRefGoogle Scholar
  40. 40.
    D. Lusseau, K. Schneider, O.J. Boisseau, P. Haase, E. Slooten, S.M. Dawson, Behav. Ecol. 54, 396 (2003) CrossRefGoogle Scholar
  41. 41.
    A. Lancichinetti, S. Fortunato, Phys. Rev. E 80, 016118 (2009) ADSCrossRefGoogle Scholar
  42. 42.
    R. Guimer, M. Salespardo, L.A.N. Amaral, Phys. Rev. E 70, 025101 (2004) ADSCrossRefGoogle Scholar
  43. 43.
    S. Fortunato, M. Barthlemy, Proc. Natl. Acad. Sci. USA 104, 36 (2006) ADSCrossRefGoogle Scholar
  44. 44.
    L. Danon, A. Dazguilera, J. Duch, A. Arenas, J. Stat. Mech. 2005, 09008 (2005) CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Wen-Kuo Cui
    • 1
    • 2
  • Ke-Ke Shang
    • 3
  • Yong-Jian Zhang
    • 1
  • Jing Xiao
    • 1
  • Xiao-Ke Xu
    • 1
    • 2
  1. 1.College of Information and Communication Engineering, Dalian Minzu UniversityDalianP.R. China
  2. 2.Guizhou Provincial Key Laboratory of Public Big Data, Guizhou UniversityGuiyangP.R. China
  3. 3.Computational Communication Collaboratory, School of Journalism and Communication, Nanjing UniversityNanjingP.R. China

Personalised recommendations