Advertisement

Density distribution in two Ising systems with particle exchange

  • Jean-Yves FortinEmail author
  • Segun Goh
  • Chansoo Kim
  • MooYoung ChoiEmail author
Regular Article
  • 31 Downloads

Abstract

Various physical and social systems are subject to exchanges of their constituent particles, in addition to usual energy exchanges or fluctuations. In this paper, we consider a system consisting of two Ising systems, a one-dimensional lattice (solid) and a fully connected system (gas) or reservoir (with constant fugacity), and exchanging particles between the two, and study the exact distribution of particles as a function of the internal couplings, temperature, and external field. Particles (with spins) in the gas can be adsorbed onto the one-dimensional lattice (corresponding to condensation) or desorbed back into the reservoir (evaporation). The distribution of the number of particles on the lattice is computed exactly and the thermodynamic limit is studied by means of the saddle-point analysis. It is found that the probability follows a cumulative Gumbel distribution, with the argument proportional to the free energy cost of removing one site.

Graphical abstract

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    P.M. Chaikin, T.C. Lubensky, Principles of Condensed Matter Physics (Cambridge University Press, Cambridge, 2000) Google Scholar
  2. 2.
    R.J Baxter, Exactly Solved Models in Statistical Mechanics (Academic Press, London, 1989) Google Scholar
  3. 3.
    J. Marro, R. Dickman, Nonequilibrium Phase Transitions in Lattice Models (Cambridge University Press, Cambridge, 1999) Google Scholar
  4. 4.
    G. Oshanin, O. Bénichou, A. Blumen, J. Stat. Phys. 112, 541 (2003) CrossRefGoogle Scholar
  5. 5.
    A.N. Jordan, C.H. Raymond Ooi, A.A. Svidzinsky, Phys. Rev. A 74, 032506 (2006) CrossRefGoogle Scholar
  6. 6.
    A.A. Svidzinsky, M.O. Scully, Phys. Rev. A 82, 063630 (2010) CrossRefGoogle Scholar
  7. 7.
    Z. Rácz, Phys. Rev. A 32, 1129 (1985) CrossRefGoogle Scholar
  8. 8.
    C. Connaughton, R. Rajesh, O. Zaboronski, J. Stat. Mech. Theor. Exp. 2010, P09016 (2010) Google Scholar
  9. 9.
    J.-Y. Fortin, J. Stat. Mech.: Theor. Exp. 2014, P09033 (2014) CrossRefGoogle Scholar
  10. 10.
    D. Ben Avraham, M.A. Burschka, C.R. Doering, J. Stat. Phys. 60, 695 (1990) CrossRefGoogle Scholar
  11. 11.
    A.P. Masucci, J. Serras, A. Johansson, M. Batty, Phys. Rev. E 88, 022812 (2013) CrossRefGoogle Scholar
  12. 12.
    S. Goh, J.-Y. Fortin, M.Y. Choi, Physica A, 466, 166 (2017) MathSciNetCrossRefGoogle Scholar
  13. 13.
    N. Goldenfeld, Lectures on Phase Transitions and the Renormalization Group (Addison-Wesley, Urbana- Champaign, 1992) Google Scholar
  14. 14.
    J. Beirlant, Y. Goegebeur, J. Segers, J. Teugels, Statistics of Extremes: Theory and Applications (Wiley, Chichester, 2004) Google Scholar
  15. 15.
    J.-Y. Fortin, M. Clusel, J. Phys. A, 48, 183001 (2015) MathSciNetCrossRefGoogle Scholar
  16. 16.
    M.Y. Choi, H. Choi, J.-Y. Fortin, J. Choi, Europhys. Lett. 85, 30006 (2009) CrossRefGoogle Scholar
  17. 17.
    S. Goh, H. W. Kwon, M.Y. Choi, J.-Y. Fortin, Phys. Rev. E 82, 061115 (2010) CrossRefGoogle Scholar
  18. 18.
    J.-Y. Fortin, S. Mantelli, M.Y. Choi, J. Phys. A, 46, 225002 (2013) MathSciNetCrossRefGoogle Scholar
  19. 19.
    S. Goh, H.W. Kwon, M.Y. Choi, J. Phys. A 47, 225101 (2014) MathSciNetCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratoire de Physique et Chimie Théoriques, CNRS UMR 7019, Université de LorraineVandoeuvre-lès-NancyFrance
  2. 2.Department of Physics and Center for Theoretical PhysicsSeoul National UniversitySeoulKorea
  3. 3.Center for Computational Science and Social and Economic Engineering Initiative, Korea Institute of Science and TechnologySeoulKorea
  4. 4.Department of Economics and Institute for Research in Finance & EconomicsSeoul National UniversitySeoulKorea

Personalised recommendations