Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Analytical and numerical simulations of energy harvesting using MEMS devices operating in nonlinear regime

  • 90 Accesses

  • 2 Citations

Abstract

While macro-scale piezoelectric generators require base excitations with moderately large amplitudes to transit from the linear regime of vibration to the nonlinear one, for a MEMS harvester due to its small dimensions, this transition can occur at oscillatory base motions even smaller than a few microns, which necessitates the nonlinear analysis of MEMS harvesting devices in most environments. In this paper the coupled electromechanical behavior of a typical MEMS-based piezoelectric harvester in the nonlinear regime is investigated. Lagrange’s equations are used in accordance to the assumed mode method to extract the coupled nonlinear equations of motion governing the lateral deflection and output voltage. An analytical solution to the derived equations is performed employing the perturbation method of multiple scales providing the nonlinear frequency responses of the output power. Results indicate that although the effect of nonlinear inertia increases due to utilizing large tip masses in these harvesters, nonlinear curvature is still the dominant effect leading to hardening behavior of the response. The comparison of the responses of the nonlinear and linear devices shows a considerable enhancement of the frequency bandwidth in the nonlinear regime. Also a nonlinear coupled electromechanical FE simulation of the harvester is conducted using the ABAQUS software where a very good agreement is observed between the results of this simulation with both analytical and numerical solutions of the governing equations.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    M.T. Dunham, M.T. Barako, S. LeBlanc, M. Asheghi, B. Chen, K.E. Goodson, Energy 93, 2006 2015

  2. 2.

    W. Yang, K. Chua, J. Pan, D. Jiang, H. An, Energy Convers. Manag. 78, 81 (2014)

  3. 3.

    A.R.M. Siddique, S. Mahmud, B. Van Heyst, Energy Convers. Manag. 106, 728 (2015)

  4. 4.

    G.J. Sheu, S.M. Yang, T. Lee, Sens. Actuators A: Phys. 167, 70 (2011)

  5. 5.

    P. Wang, K. Tanaka, S. Sugiyama, X. Dai, X. Zhao, J. Liu, Microsyst. Technol. 15, 941 (2009)

  6. 6.

    G.S. Chung, B.C. Lee, J. Intell. Material Syst. Struct. 26, 1971 (2015)

  7. 7.

    P. Miao, P. Mitcheson, A. Holmes, E. Yeatman, T. Green, B. Stark, Microsyst Technol. 12, 1079 (2006)

  8. 8.

    C. He, A. Arora, M.E. Kiziroglou, D.C. Yates, D. O’Hare, E.M. Yeatman, MEMS energy harvesting powered wireless biometric sensor, inWearable and Implantable Body Sensor Networks, 2009. BSN 2009. Sixth International Workshop on IEEE (2009), pp. 207–212

  9. 9.

    R. Elfrink et al., J. Micromech. Microeng. 20, 104001 (2010)

  10. 10.

    H. Yu, J. Zhou, L. Deng, Z. Wen, Sensors 14, 3323 (2014)

  11. 11.

    A. Hande, R. Bridgelall, D. Bhatia, inEnergy Harvesting Technologies (Springer, 2009), pp. 459–492

  12. 12.

    C. Bowen, M. Arafa, Adv. Energy Mater. 5, 1401787 (2015)

  13. 13.

    C. Williams, C. Shearwood, M. Harradine, P. Mellor, T. Birch, R. Yates, IEE Proc. Circ. Dev. Syst. 148, 337 (2001)

  14. 14.

    P.D. Mitcheson, P. Miao, B.H. Stark, E. Yeatman, A. Holmes, T. Green, Sens. Actuators A Phys. 115, 523 (2004)

  15. 15.

    C.Y. Sue, N.C. Tsai, Appl. Energy 93, 390 (2012)

  16. 16.

    Y. Jeon, R. Sood, J.H. Jeong, S.G. Kim, Sens. Actuators A Phys. 122, 16 (2005)

  17. 17.

    D. Shen, J.H. Park, J. Ajitsaria, S.Y. Choe, H.C. Wikle III, D.J. Kim, J. Micromech. Microeng. 18, 055017 (2008)

  18. 18.

    E. Aktakka, H. Kim, K. Najafi, Wafer level fabrication of high performance MEMS using bonded and thinned bulk piezoelectric substrates, inSolid-State Sensors, Actuators and Microsystems Conference, 2009. TRANSDUCERS 2009. International IEEE, 2009 (2009), pp. 849–852

  19. 19.

    A. Lei, R. Xu, A. Thyssen, A.C. Stoot, T.L. Christiansen, K. Hansen, R. Lou-Moeller, E.V. Thomsen, K. Birkelund, MEMS-based thick film PZT vibrational energy harvester, inMicro electro mechanical systems (MEMS), 2011 IEEE 24th international conference on IEEE, 2011 (2011), pp. 125–128

  20. 20.

    R. Elfrink, T. Kamel, M. Goedbloed, S. Matova, D. Hohlfeld, Y. Van Andel, R. Van Schaijk, J. Micromech. Microeng. 19, 094005 (2009)

  21. 21.

    B. Yang, H. Liu, J. Liu, C. Lee,Micro and Nano Energy Harvesting Technologies (Artech House, 2014)

  22. 22.

    P.L. Green, E. Papatheou, N.D. Sims, J. Intell. MaterialSyst. Struct. 24, 1494 (2013)

  23. 23.

    B. Mann, N. Sims, J. Sound Vib. 319, 515 (2009)

  24. 24.

    D.A. Barton, S.G. Burrow, L.R. Clare, J. Vib. Acoustics 132, 021009 (2010)

  25. 25.

    D.D. Quinn, A.L. Triplett, L.A. Bergman, A.F. Vakakis, J. Vib. Acoustics 133, 011001 (2011)

  26. 26.

    S. Roundy, P.K. Wright, J. Rabaey, Comput. Commun. 26, 1131 (2003)

  27. 27.

    F. Lu, H. Lee, S. Lim, Smart Mater. Struct. 13, 57 (2003)

  28. 28.

    S.N. Chen, G.J. Wang, M.C. Chien, Mechatronics 16, 379 (2006)

  29. 29.

    F. Cottone, H. Vocca, L. Gammaitoni, Phys. Rev. Lett. 102, 080601 (2009)

  30. 30.

    A. Erturk, D. Inman, J. Sound Vib. 330, 2339 (2011)

  31. 31.

    M. Ferrari, V. Ferrari, M. Guizzetti, B. Andò, S. Baglio, C. Trigona, Sens Actuators A: Phys. 162, 425 (2010)

  32. 32.

    Y. Hu, H. Xue, J. Yang, Q. Jiang, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53, 1387 (2006)

  33. 33.

    A. Pasharavesh, M. Ahmadian, H. Zohoor, Int. J. Mech. Mater. Des. 13, 499 (2017)

  34. 34.

    Y. Hu, T. Hu, Q. Jiang, Acta Mechanica Solida Sinica 20, 296 (2007)

  35. 35.

    A. Pasharavesh, M. Ahmadian, H. Zohoor, Microsyst. Technol. 23, 2403 (2017)

  36. 36.

    A. Pasharavesh, M. Ahmadian, Appl. Math. Model. 41, 121 (2017)

  37. 37.

    S.N. Mahmoodi, M. Afshari, N. Jalili, Commun. onlinear Sci. Numer. Simul. 13, 1964 2008

  38. 38.

    J. Yang, inAn introduction to the theory of piezoelectricity (Springer Science & Business Media, 2004), Vol. 9

  39. 39.

    S.S. Rao,Vibration of continuous systems (John Wiley & Sons, 2007)

  40. 40.

    A.H. Nayfeh, D.T. Mook,Nonlinear oscillations (John Wiley & Sons, 2008)

  41. 41.

    M. Staworko, T. Uhl, Mechanics/AGH University of Science and Technology 27, 161 (2008)

  42. 42.

    J. Park, S. Lee, B.M. Kwak, J. Mech. Sci. Technol. 26, 137 (2012)

  43. 43.

    L. Zhang,Analytical modeling and design optimization of piezoelectric bimorph energy harvester (The University of Alabama, 2010)

  44. 44.

    L.H. Tang, Y.W. Yang, System-Level Modeling of Piezoelectric Energy Harvesters, inAdvanced Materials Research (Trans. Tech. Publ., 2009), Vol. 79, pp. 103–106

  45. 45.

    R. O’Keeffe, N. Jackson, F. Waldron, M. O’Niell, K. McCarthy, A. Mathewson, Investigation into modelling power output for MEMS energy harvesting devices using COMSOL Multiphysics R, inThermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE), 2013 14th International Conference on IEEE, 2013 (2013), pp. 1–6

  46. 46.

    E. Varadarajan, M. Bhanusri, Design and simulation of unimorph piezoelectric energy harvesting system, inCOMSOL Conference in Bangalore (2013), pp. 17–18

  47. 47.

    G.K. Ottman, H.F. Hofmann, A.C. Bhatt, G.A. Lesieutre, IEEE Trans. Power Electron. 17, 669 (2002)

Download references

Author information

Correspondence to Abdolreza Pasharavesh.

Additional information

Contribution to the Topical Issue “The Physics of Micro-Energy Use and Transformation”, edited by Luca Gammaitoni.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pasharavesh, A., Ahmadian, M.T. Analytical and numerical simulations of energy harvesting using MEMS devices operating in nonlinear regime. Eur. Phys. J. B 91, 241 (2018). https://doi.org/10.1140/epjb/e2018-80609-8

Download citation