The dynamics of a polariton dimer in a disordered coupled array of cavities

Regular Article
  • 21 Downloads

Abstract

We investigate the effect of disorder in the laser intensity on the dynamics of dark-state polaritons in an array of 20 cavities, each containing an ensemble of four-level atoms that is described by a Bose-Hubbard Hamiltonian. We examine the evolution of the polariton number in the cavities starting from a state with either one or two polaritons in one of the cavities. For the case of a single polariton without disorder in the laser intensity, we calculate the wavefunction of the polariton and find that it disperses away from the initial cavity with time. The addition of disorder results in minimal suppression of the dispersal of the wavefunction. In the case of two polaritons with an on-site repulsion to hopping strength ratio of 20, we find that the polaritons form a repulsively bound state or dimer. Without disorder the dimer wavefunction disperses similarly to the single polariton wavefunction but over a longer time period. The addition of sufficiently strong disorder results in localization of the polariton dimer. The localization length is found to be described by a power law with exponent − 1.31. We also find that we can localise the dimer at any given time by switching on the disorder.

Keywords

Solid State and Materials 

References

  1. 1.
    K. Winkler, G. Thalhammer, F. Lang, R. Grimm, J. Hecker Denschlag, A.J. Daley, A. Kantian, H.P. Büchler, P. Zoller, Nature 441, 853 (2006) ADSCrossRefGoogle Scholar
  2. 2.
    M. Valiente, D. Petrosyan, J. Phys. B: At. Mol. Opt. Phys. 41, 161002 (2008) ADSCrossRefGoogle Scholar
  3. 3.
    J. Javanainen, O. Odong, J.C. Sanders, Phys. Rev. A 81, 043609 (2010) ADSCrossRefGoogle Scholar
  4. 4.
    D. Petrosyan, B. Schmidt, J.R. Anglin, M. Fleischhauer, Phys. Rev. A 76, 033606 (2007) ADSCrossRefGoogle Scholar
  5. 5.
    L. Wang, Y. Hao, S. Chen, Eur. Phys. J. D 48, 229 (2008) ADSCrossRefGoogle Scholar
  6. 6.
    L.F. Santos, M.I. Dykman, New J. Phys. 14, 095019 (2012) ADSCrossRefGoogle Scholar
  7. 7.
    M. Valiente, D. Petrosyan, Europhys. Lett. 83, 30007 (2008) ADSCrossRefGoogle Scholar
  8. 8.
    M. Valiente, D. Petrosyan, J. Phys. B: At. Mol. Opt. Phys. 42, 121001 (2009) ADSCrossRefGoogle Scholar
  9. 9.
    Y.M. Wang, J.Q. Liang, Phys. Rev. A 81, 045601 (2010) ADSCrossRefGoogle Scholar
  10. 10.
    J.C. Sanders, O. Odong, J. Javanainen, M. Mackie, Phys. Rev. A 83, 031607 (2011) ADSCrossRefGoogle Scholar
  11. 11.
    A. Deuchert, K. Sakmann, A.I. Streltsov, O.E. Alon, L.S. Cederbaum, Phys. Rev. A 86, 013618 (2012) ADSCrossRefGoogle Scholar
  12. 12.
    J.M. Zhang, D. Braak, M. Kollar, Phys. Rev. A 87, 023613 (2013) ADSCrossRefGoogle Scholar
  13. 13.
    J.M. Zhang, D. Braak, M. Kollar, Phys. Rev. Lett. 109, 116405 (2012) ADSCrossRefGoogle Scholar
  14. 14.
    D.G. Angelakis, M.F. Santos, S. Bose, Phys. Rev. A 76, 031805 (2007) ADSCrossRefGoogle Scholar
  15. 15.
    A. Badolato, K. Hennessy, M. Atatüre, J. Dreiser, E. Hu, P.M. Petroff, A. Imamoğlu, Science 308, 1158 (2005) ADSCrossRefGoogle Scholar
  16. 16.
    K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatre, S. Gulde, S. Flt, E.L. Hu, A. Imamolu, Nature 445, 896 (2007) ADSCrossRefGoogle Scholar
  17. 17.
    M. Notomi, E. Kuramochi, T. Tanabe, Nat. Photonics 2, 741 (2008) ADSCrossRefGoogle Scholar
  18. 18.
    K. Busch, G. von Freymann, S. Linden, S. Mingaleev, L. Tkeshelashvili, M. Wegener, Phys. Rep. 444, 101 (2007) ADSCrossRefGoogle Scholar
  19. 19.
    M.J. Hartmann, F.G.S.L. Brandão, M.B. Plenio, Laser Photonics Rev. 2, 527 (2008) CrossRefGoogle Scholar
  20. 20.
    D.E. Chang, V. Vuletić, M.D. Lukin, Nat. Photonics 8, 685 (2014) ADSCrossRefGoogle Scholar
  21. 21.
    M.J. Hartmann, J. Opt. 18, 104005 (2016) ADSCrossRefGoogle Scholar
  22. 22.
    A.D. Greentree, C. Tahan, J.H. Cole, L.C.L. Hollenberg, Nat. Phys. 2, 856 (2006) CrossRefGoogle Scholar
  23. 23.
    D. Rossini, R. Fazio, Phys. Rev. Lett. 99, 186401 (2007) ADSCrossRefGoogle Scholar
  24. 24.
    M.J. Hartmann, F.G.S.L. Brandão, M.B. Plenio, Nat. Phys. 2, 849 (2006) CrossRefGoogle Scholar
  25. 25.
    M.J. Hartmann, F.G.S.L. Brandão, M.B. Plenio, New J. Phys. 10, 033011 (2008) ADSCrossRefGoogle Scholar
  26. 26.
    A. Aiyejina, R. Andrews, Eur. Phys. J. B 89, 89 (2016) ADSCrossRefGoogle Scholar
  27. 27.
    A. Aiyejina, R. Andrews, Eur. Phys. J. B 90, 69 (2017) ADSCrossRefGoogle Scholar
  28. 28.
    S.M. Spillane, T.J. Kippenberg, K.J. Vahala, K.W. Goh, E. Wilcut, H.J. Kimble, Phys. Rev. A 71, 013817 (2005) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.The Department of Physics, The University of the West IndiesSt. AugustineTrinidad and Tobago

Personalised recommendations