Advertisement

Effects of geometry and linearly polarized cavity photons on charge and spin currents in a quantum ring with spin-orbit interactions

Abstract

We calculate the persistent charge and spin polarization current inside a finite-width quantum ring of realistic geometry as a function of the strength of the Rashba or Dresselhaus spin-orbit interaction. The time evolution in the transient regime of the two-dimensional (2D) quantum ring connected to electrically biased semi-infinite leads is governed by a time-convolutionless non-Markovian generalized master equation. The electrons are correlated via Coulomb interaction. In addition, the ring is embedded in a photon cavity with a single mode of linearly polarized photon field, which is polarized either perpendicular or parallel to the charge transport direction. To analyze carefully the physical effects, we compare to the analytical results of the toy model of a one-dimensional (1D) ring of non-interacting electrons with spin-orbit coupling. We find a pronounced charge current dip associated with many-electron level crossings at the Aharonov-Casher phase ΔΦ = π, which can be disguised by linearly polarized light. Qualitative agreement is found for the spin polarization currents of the 1D and 2D ring. Quantitatively, however, the spin polarization currents are weaker in the more realistic 2D ring, especially for weak spin-orbit interaction, but can be considerably enhanced with the aid of a linearly polarized electromagnetic field. Specific spin polarization current symmetries relating the Dresselhaus spin-orbit interaction case to the Rashba one are found to hold for the 2D ring, which is embedded in the photon cavity.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

References

  1. 1.

    Y. Aharonov, D. Bohm, Phys. Rev. 115, 485 (1959)

  2. 2.

    Y. Aharonov, A. Casher, Phys. Rev. Lett. 53, 319 (1984)

  3. 3.

    Y. Aharonov, J. Anandan, Phys. Rev. Lett. 58, 1593 (1987)

  4. 4.

    D.J. Griffiths, Introduction to Quantum Mechanics (Pearson Education, 2005)

  5. 5.

    F. Nagasawa, D. Frustaglia, H. Saarikoski, K. Richter, J. Nitta, Nat. Commun. 4, 2526 (2013)

  6. 6.

    S. Filipp, Ph.D. thesis, Technischen Universität Wien (2006)

  7. 7.

    M.V. Berry, Proc. R. Soc. Lond. A 392, 45 (1984)

  8. 8.

    B. Szafran, F.M. Peeters, Phys. Rev. B 72, 165301 (2005)

  9. 9.

    S.S. Buchholz, S.F. Fischer, U. Kunze, M. Bell, D. Reuter, A.D. Wieck, Phys. Rev. B 82, 045432 (2010)

  10. 10.

    M. Büttiker, Y. Imry, M.Y. Azbel, Phys. Rev. A 30, 1982 (1984)

  11. 11.

    K.N. Pichugin, A.F. Sadreev, Phys. Rev. B 56, 9662 (1997)

  12. 12.

    T. Arnold, C.S. Tang, A. Manolescu, V. Gudmundsson, Phys. Rev. B 87, 035314 (2013)

  13. 13.

    H.F. Cheung, Y. Gefen, E.K. Riedel, W.H. Shih, Phys. Rev. B 37, 6050 (1988)

  14. 14.

    W.C. Tan, J.C. Inkson, Phys. Rev. B 60, 5626 (1999)

  15. 15.

    R.A. Webb, S. Washburn, C.P. Umbach, R.B. Laibowitz, Phys. Rev. Lett. 54, 2696 (1985)

  16. 16.

    S. Oh, C.M. Ryu, Phys. Rev. B 51, 13441 (1995)

  17. 17.

    Y.A. Bychkov, E.I. Rashba, J. Phys. C 17, 6039 (1984)

  18. 18.

    G. Dresselhaus, Phys. Rev. 100, 580 (1955)

  19. 19.

    D. Loss, P. Goldbart, A.V. Balatsky, Phys. Rev. Lett. 65, 1655 (1990)

  20. 20.

    A.V. Balatsky, B.L. Altshuler, Phys. Rev. Lett. 70, 1678 (1993)

  21. 21.

    A.A. Kovalev, M.F. Borunda, T. Jungwirth, L.W. Molenkamp, J. Sinova, Phys. Rev. B 76, 125307 (2007)

  22. 22.

    S.K. Maiti, M. Dey, S. Sil, A. Chakrabarti, S.N. Karmakar, Europhys. Lett. 95, 57008 (2011)

  23. 23.

    J. Splettstoesser, M. Governale, U. Zülicke, Phys. Rev. B 68, 165341 (2003)

  24. 24.

    M. Nita, D.C. Marinescu, A. Manolescu, V. Gudmundsson, Phys. Rev. B 83, 155427 (2011)

  25. 25.

    E.B. Sonin, Phys. Rev. Lett. 99, 266602 (2007)

  26. 26.

    Q.F. Sun, X.C. Xie, J. Wang, Phys. Rev. B 77, 035327 (2008)

  27. 27.

    J.S. Sheng, K. Chang, Phys. Rev. B 74, 235315 (2006)

  28. 28.

    A. Matos-Abiague, J. Berakdar, Phys. Rev. Lett. 94, 166801 (2005)

  29. 29.

    Y.V. Pershin, C. Piermarocchi, Phys. Rev. B 72, 245331 (2005)

  30. 30.

    O.V. Kibis, Phys. Rev. Lett. 107, 106802 (2011)

  31. 31.

    O.V. Kibis, O. Kyriienko, I.A. Shelykh, Phys. Rev. B 87, 245437 (2013)

  32. 32.

    Z.G. Zhu, J. Berakdar, Phys. Rev. B 77, 235438 (2008)

  33. 33.

    O. Jonasson, C.S. Tang, H.S. Goan, A. Manolescu, V. Gudmundsson, New J. Phys. 14, 013036 (2012)

  34. 34.

    E. Jaynes, F.W. Cummings, Proc. IEEE 51, 89 (1963)

  35. 35.

    Y. Wu, X. Yang, Phys. Rev. Lett. 98, 013601 (2007)

  36. 36.

    A.T. Sornborger, A.N. Cleland, M.R. Geller, Phys. Rev. A 70, 052315 (2004)

  37. 37.

    D. Frustaglia, K. Richter, Phys. Rev. B 69, 235310 (2004)

  38. 38.

    G. Ying-Fang, Z. Yong-Ping, L. Jiu-Qing, Chinese Phys. Lett. 21, 2093 (2004)

  39. 39.

    Y.S. Yi, T.Z. Qian, Z.B. Su, Phys. Rev. B 55, 10631 (1997)

  40. 40.

    A.G. Aronov, Y.B. Lyanda-Geller, Phys. Rev. Lett. 70, 343 (1993)

  41. 41.

    X.F. Wang, P. Vasilopoulos, Phys. Rev. B 72, 165336 (2005)

  42. 42.

    C.S. Tang, C.S. Chu, Phys. Rev. B 60, 1830 (1999)

  43. 43.

    G. Zhou, Y. Li, J. Phys.: Condens. Matter 17, 6663 (2005)

  44. 44.

    J.W. Jung, K. Na, L.E. Reichl, Phys. Rev. A 85, 023420 (2012)

  45. 45.

    C.S. Tang, C.S. Chu, Physica B 292, 127 (2000)

  46. 46.

    G. Zhou, M. Yang, X. Xiao, Y. Li, Phys. Rev. B 68, 155309 (2003)

  47. 47.

    H. Spohn, Rev. Mod. Phys. 52, 569 (1980)

  48. 48.

    S.A. Gurvitz, Y.S. Prager, Phys. Rev. B 53, 15932 (1996)

  49. 49.

    N.G. van Kampen, Stochastic Processes in Physics and Chemistry, 2nd edn. (North-Holland, Amsterdam, 2001)

  50. 50.

    U. Harbola, M. Esposito, S. Mukamel, Phys. Rev. B 74, 235309 (2006)

  51. 51.

    C. Bruder, H. Schoeller, Phys. Rev. Lett. 72, 1076 (1994)

  52. 52.

    A. Braggio, J. König, R. Fazio, Phys. Rev. Lett. 96, 026805 (2006)

  53. 53.

    V. Moldoveanu, A. Manolescu, V. Gudmundsson, New J. Phys. 11, 073019 (2009)

  54. 54.

    H.P. Breuer, B. Kappler, F. Petruccione, Phys. Rev. A 59, 1633 (1999)

  55. 55.

    T. Arnold, M. Siegmund, O. Pankratov, J. Phys.: Condens. Matter 23, 335601 (2011)

  56. 56.

    W.C. Tan, J.C. Inkson, Semicond. Sci. Technol. 11, 1635 (1996)

  57. 57.

    J. Shi, P. Zhang, D. Xiao, Q. Niu, Phys. Rev. Lett. 96, 076604 (2006)

  58. 58.

    N. Bray-Ali, Z. Nussinov, Phys. Rev. B 80, 012401 (2009)

  59. 59.

    E.I. Rashba, Phys. Rev. B 68, 241315 (2003)

  60. 60.

    H.J. Drouhin, G. Fishman, J.E. Wegrowe, Phys. Rev. B 83, 113307 (2011)

  61. 61.

    F. Bottegoni, H.J. Drouhin, G. Fishman, J.E. Wegrowe, Phys. Rev. B 85, 235313 (2012)

  62. 62.

    E.B. Sonin, Phys. Rev. B 76, 033306 (2007)

  63. 63.

    R.S. Whitney, J. Phys. A 41, 175304 (2008)

  64. 64.

    V. Gudmundsson, O. Jonasson, C.S. Tang, H.S. Goan, A. Manolescu, Phys. Rev. B 85, 075306 (2012)

  65. 65.

    V. Gudmundsson, C. Gainar, C.S. Tang, V. Moldoveanu, A. Manolescu, New J. Phys. 11, 113007 (2009)

  66. 66.

    M.S. Sarandy, D.A. Lidar, Phys. Rev. Lett. 95, 250503 (2005)

  67. 67.

    A. Carollo, I. Fuentes-Guridi, M.F.M.C. Santos, V. Vedral, Phys. Rev. Lett. 90, 160402 (2003)

  68. 68.

    F.E. Meijer, A.F. Morpurgo, T.M. Klapwijk, Phys. Rev. B 66, 033107 (2002)

  69. 69.

    K. Shakouri, B. Szafran, M. Esmaeilzadeh, F.M. Peeters, Phys. Rev. B 85, 165314 (2012)

  70. 70.

    F. Nagasawa, J. Takagi, Y. Kunihashi, M. Kohda, J. Nitta, Phys. Rev. Lett. 108, 086801 (2012)

  71. 71.

    B. Molnár, F.M. Peeters, P. Vasilopoulos, Phys. Rev. B 69, 155335 (2004)

  72. 72.

    N. Byers, C.N. Yang, Phys. Rev. Lett. 7, 46 (1961)

  73. 73.

    S. Viefers, P. Koskinen, P.S. Deo, M. Manninen, Physica E 21, 1 (2004)

Download references

Author information

Correspondence to Thorsten Arnold.

Electronic supplementary material

Movie j_ph^x,x.mpg

MPG file

MPG file

Movie j_ph^y,x.mpg

MPG file

MPG file

Movie j_ph^z,x.mpg

MPG file

MPG file

Movie j^x.mpg

MPG file

MPG file

Movie j^z.mpg

MPG file

MPG file

Movie j_ph^x,y.mpg

MPG file

MPG file

Movie j_ph^y,y.mpg

MPG file

MPG file

Movie j_ph^z,y.mpg

MPG file

MPG file

Movie j^y.mpg

MPG file

MPG file

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Arnold, T., Tang, C., Manolescu, A. et al. Effects of geometry and linearly polarized cavity photons on charge and spin currents in a quantum ring with spin-orbit interactions. Eur. Phys. J. B 87, 113 (2014) doi:10.1140/epjb/e2014-50144-y

Download citation

Keywords

  • Mesoscopic and Nanoscale Systems