Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

The effect of gluon condensate on imaginary potential and thermal width from holography

  • 2 Accesses

Abstract

By the use of the gauge/gravity duality, we calculate the imaginary part of heavy quarkonium potential and thermal width with the effect of gluon condensate which is absent in \(\hbox {AdS}_{{5}}\) background. Our results show that the dropping gluon condensate reduces the absolute value of imaginary potential and therefore decreases the thermal width both in “exact” and “approximate” approach implying that the heavy quarkonium has a weaker bound with the increase of gluon condensate. In addition, the thermal width will disappear at a critical condensate value, which indicates the dissociation of quarkonium. We conclude that increasing gluon condensate will lead to easier dissociation of heavy quarkonium for fixed temperature.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This is a theoretical study and no experimental data.]

References

  1. 1.

    J. Adams et al., Nucl. Phys. A 757, 102 (2005)

  2. 2.

    K. Adcox et al., Nucl. Phys. A 757, 184 (2005)

  3. 3.

    E.V. Shuryak, Phys. Rep. 61, 71 (1980)

  4. 4.

    T. Matsui, H. Satz, Phys. Lett. B 178, 416 (1986)

  5. 5.

    M. Laine, O. Philipsen, P. Romatschke, M. Tassler, JHEP 03, 054 (2007)

  6. 6.

    N. Brambilla, M.A. Escobedo, J. Ghiglieri, J. Soto, A. Vairo, JHEP 09, 038 (2010)

  7. 7.

    J. Noronha, A. Dumitru, Phys. Rev. Lett. 103, 152304 (2009)

  8. 8.

    K Bitaghsir Fadafan, D. Giataganas, H. Soltanpanahi, JHEP 11, 107 (2013)

  9. 9.

    S.I. Finazzo, J. Noronha, JHEP 11, 042 (2013)

  10. 10.

    K.B. Fadafan, S.K. Tabatabaei, Eur. Phys. J. C 74, 2842 (2014)

  11. 11.

    N.R.F. Braga, L.F. Ferreira, Phys. Rev. D 94(9), 094019 (2016)

  12. 12.

    L. Thakur, N. Haque, H. Mishra, Phys. Rev. D 95(3), 036014 (2017)

  13. 13.

    M. Laine, JHEP 05, 028 (2007)

  14. 14.

    A. Beraudo, J.P. Blaizot, C. Ratti, Nucl. Phys. A 806, 312 (2008)

  15. 15.

    N. Brambilla, J. Ghiglieri, A. Vairo, P. Petreczky, Phys. Rev. D 78, 014017 (2008)

  16. 16.

    A. Dumitru, Y. Guo, M. Strickland, Phys. Rev. D 79, 114003 (2009)

  17. 17.

    M. Margotta, K. McCarty, C. McGahan, M. Strickland, D. Yager-Elorriaga, Phys. Rev. D 83, 105019 (2011)

  18. 18.

    V. Chandra, V. Ravishankar, Nucl. Phys. A 848, 330 (2010)

  19. 19.

    M.A. Escobedo, F. Giannuzzi, M. Mannarelli, J. Soto, Phys. Rev. D 87(11), 114005 (2013)

  20. 20.

    E.V. Shuryak, Nucl. Phys. A 750, 64 (2005)

  21. 21.

    J.M. Maldacena, Int. J. Theor. Phys. 38, 1113 (1999)

  22. 22.

    S.S. Gubser, I.R. Klebanov, A.M. Polyakov, Phys. Lett. B 428, 105 (1998)

  23. 23.

    E. Witten, Adv. Theor. Math. Phys. 2, 253 (1998)

  24. 24.

    J. Erlich, E. Katz, D.T. Son, M.A. Stephanov, Phys. Rev. Lett. 95, 261602 (2005)

  25. 25.

    G.F. de Teramond, S.J. Brodsky, Phys. Rev. Lett. 94, 201601 (2005)

  26. 26.

    L. Da Rold, A. Pomarol, Nucl. Phys. B 721, 79 (2005)

  27. 27.

    J. Babington, J. Erdmenger, N.J. Evans, Z. Guralnik, I. Kirsch, Phys. Rev. D 69, 066007 (2004)

  28. 28.

    M. Kruczenski, D. Mateos, R.C. Myers, D.J. Winters, JHEP 05, 041 (2004)

  29. 29.

    T. Sakai, S. Sugimoto, Prog. Theor. Phys. 113, 843 (2005)

  30. 30.

    T. Sakai, S. Sugimoto, Prog. Theor. Phys. 114, 1083 (2005). https://doi.org/10.1143/PTP.114.1083

  31. 31.

    C. Csaki, M. Reece, JHEP 05, 062 (2007)

  32. 32.

    S. He, M. Huang, Q.S. Yan, Y. Yang, Eur. Phys. J. C 66, 187 (2010)

  33. 33.

    T. Gherghetta, J.I. Kapusta, T.M. Kelley, Phys. Rev. D 79, 076003 (2009)

  34. 34.

    T.M. Kelley, S.P. Bartz, J.I. Kapusta, Phys. Rev. D 83, 016002 (2011)

  35. 35.

    Y.Q. Sui, Y.L. Wu, Z.F. Xie, Y.B. Yang, Phys. Rev. D 81, 014024 (2010)

  36. 36.

    Y.Q. Sui, Y.L. Wu, Y.B. Yang, Phys. Rev. D 83, 065030 (2011)

  37. 37.

    D. Li, M. Huang, Q.S. Yan, Eur. Phys. J. C 73, 2615 (2013)

  38. 38.

    D. Li, M. Huang, JHEP 11, 088 (2013)

  39. 39.

    Y. Chen, M. Huang, Chin. Phys. C 40(12), 123101 (2016)

  40. 40.

    N. Evans, A. Tedder, Phys. Lett. B 642, 546 (2006)

  41. 41.

    Y. Xiong, X. Tang, Z. Luo, Chin. Phys. C 43(11), 113103 (2019)

  42. 42.

    Z. Fang, S. He, D. Li, Nucl. Phys. B 907, 187 (2016)

  43. 43.

    W. Xie, A. Watanabe, M. Huang, JHEP 10, 053 (2019)

  44. 44.

    Zq Zhang, Df Hou, G. Chen, Phys. Lett. B 768, 180 (2017)

  45. 45.

    Y. Zhong, C.B. Yang, X. Cai, S.Q. Feng, Adv. High Energy Phys. 2014, 193039 (2014)

  46. 46.

    V. Skokov, AYu. Illarionov, V. Toneev, Int. J. Mod. Phys. A 24, 5925 (2009)

  47. 47.

    V.P. Gusynin, V.A. Miransky, I.A. Shovkovy, Phys. Rev. Lett. 73, 3499 (1994)

  48. 48.

    G.S. Bali, F. Bruckmann, G. Endrodi, Z. Fodor, S.D. Katz, S. Krieg, A. Schafer, K.K. Szabo, JHEP 02, 044 (2012)

  49. 49.

    V.P. Gusynin, V.A. Miransky, I.A. Shovkovy, Nucl. Phys. B 462, 249 (1996)

  50. 50.

    G.S. Bali, F. Bruckmann, G. Endrodi, Z. Fodor, S.D. Katz, A. Schafer, Phys. Rev. D 86, 071502 (2012)

  51. 51.

    V. Voronyuk, V.D. Toneev, W. Cassing, E.L. Bratkovskaya, V.P. Konchakovski, S.A. Voloshin, Phys. Rev. C 83, 054911 (2011)

  52. 52.

    M. D’Elia, S. Mukherjee, F. Sanfilippo, Phys. Rev. D 82, 051501 (2010)

  53. 53.

    I.A. Shushpanov, A.V. Smilga, Phys. Lett. B 402, 351 (1997)

  54. 54.

    D.E. Kharzeev, K. Landsteiner, A. Schmitt, H.U. Yee, Lect. Notes Phys. 871, 1 (2013)

  55. 55.

    K. Tuchin, Adv. High Energy Phys. 2013, 490495 (2013)

  56. 56.

    F. Bruckmann, G. Endrodi, T.G. Kovacs, JHEP 04, 112 (2013)

  57. 57.

    G. Baym, D. Bodeker, L.D. McLerran, Phys. Rev. D 53, 662 (1996)

  58. 58.

    Y. Guo, S. Shi, S. Feng, J. Liao, Phys. Lett. B 798, 134929 (2019)

  59. 59.

    B.X. Chen, S.Q. Feng (2019). arXiv:1909.10836

  60. 60.

    Zq Zhang, Df Hou, Phys. Lett. B 778, 227 (2018)

  61. 61.

    Z.R. Zhu, S.Q. Feng, Y.F. Shi, Y. Zhong, Phys. Rev. D 99(12), 126001 (2019)

  62. 62.

    X. Chen, S.Q. Feng, Y.F. Shi, Y. Zhong, Phys. Rev. D 97(6), 066015 (2018)

  63. 63.

    S.I. Finazzo, J. Noronha, JHEP 01, 051 (2015)

  64. 64.

    P. Colangelo, F. Giannuzzi, S. Nicotri, F. Zuo, Phys. Rev. D 88(11), 115011 (2013)

  65. 65.

    H. Leutwyler, in QCD 20 Years Later: Proceedings, Workshop, Aachen, Germany, June 9–13, 1992 (1992), pp. 693–716

  66. 66.

    P. Castorina, M. Mannarelli, Phys. Rev. C 75, 054901 (2007)

  67. 67.

    K. Morita, S.H. Lee, Phys. Rev. C 77, 064904 (2008)

  68. 68.

    G. Boyd, D.E. Miller (1996). arXiv:hep-ph/9608482

  69. 69.

    Y. Kim, B.H. Lee, C. Park, S.J. Sin, JHEP 09, 105 (2007)

  70. 70.

    Y. Kim, B.H. Lee, C. Park, S.J. Sin, Phys. Rev. D 80, 105016 (2009)

  71. 71.

    Zq Zhang, X. Zhu, Eur. Phys. J. C 79(2), 107 (2019)

  72. 72.

    M. Ali-Akbari, D. Giataganas, Z. Rezaei, Phys. Rev. D 90(8), 086001 (2014)

  73. 73.

    U. Gursoy, E. Kiritsis, L. Mazzanti, F. Nitti, Phys. Rev. Lett. 101, 181601 (2008)

  74. 74.

    P.N. Kopnin, A. Krikun, Phys. Rev. D 84, 066002 (2011)

  75. 75.

    X. Chen, D. Li, M. Huang, Chin. Phys. C 43(2), 023105 (2019)

  76. 76.

    X. Chen, D. Li, D. Hou, M. Huang (2019). arXiv:1908.02000

  77. 77.

    K.G. Wilson, Phys. Rev. D 10, 2445 (1974)

  78. 78.

    J.L. Gervais, A. Neveu, Nucl. Phys. B 163, 189 (1980)

  79. 79.

    A.M. Polyakov, Nucl. Phys. B 164, 171 (1980)

  80. 80.

    S. Nojiri, S.D. Odintsov, Phys. Lett. B 449, 39 (1999)

  81. 81.

    A. Kehagias, K. Sfetsos, Phys. Lett. B 454, 270 (1999)

  82. 82.

    Y. Kim, J.P. Lee, S.H. Lee, Phys. Rev. D 75, 114008 (2007). https://doi.org/10.1103/PhysRevD.75.114008

  83. 83.

    M. Kruczenski, D. Mateos, R.C. Myers, D.J. Winters, JHEP 07, 049 (2003)

  84. 84.

    D. Giataganas, PoS Corfu 2012, 122 (2013)

  85. 85.

    K Bitaghsir Fadafan, S.K. Tabatabaei, J. Phys. G43(9), 095001 (2016). https://doi.org/10.1088/0954-3899/43/9/095001

  86. 86.

    O. DeWolfe, S.S. Gubser, C. Rosen, Phys. Rev. D 83, 086005 (2011)

Download references

Acknowledgements

We would like to thank Zi-qiang Zhang for useful discussions of imaginary potential.

Author information

Correspondence to Xun Chen.

Additional information

Communicated by Reinhard Alkofer

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Zhu, Z. & Chen, X. The effect of gluon condensate on imaginary potential and thermal width from holography. Eur. Phys. J. A 56, 57 (2020). https://doi.org/10.1140/epja/s10050-020-00072-5

Download citation