Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

\(\Omega _{ccc}\) baryon production from gluon in vector diquark fragmentation

  • 8 Accesses

Abstract

Hadronization is known as the nonperturbative part of hadron production process which is described by the process-independent fragmentation functions. These functions refer to the probability densities for the initial partons to fragment into observed hadrons carrying away the momentum fractions of parent partons. In this work, using the quark-diquark approximative model we compute the fragmentation density of gluon into polarized triply heavy baryon \(\Omega _{ccc}\) in a vector cc-diquark fragmentation. To impose the polarization effect of baryon into the corresponding fragmentation function we shall apply three different scenarios and compare all results.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: At present, there are no data for triply heavy baryons because of high energy needed to construct them then our theoretical results cannot be compared with the data.]

References

  1. 1.

    J. dos Anjos, G. Herrera, J. Magnin, F.R.A. Simao, Phys. Rev. D 56, 394 (1997)

  2. 2.

    A.D. Adamov, G.R. Goldstein, Phys. Rev. D 56, 7381 (1997)

  3. 3.

    A. Bravar et al., [E704 Collaboration]. Phys. Rev. Lett. 78, 4003 (1997)

  4. 4.

    T. Kuhr [CDF and D0 Collaborations], arXiv:1109.1944 [hep-ex]

  5. 5.

    A.F. Falk, M.E. Luke, M.J. Savage, M.B. Wise, Phys. Rev. D 49, 555 (1994)

  6. 6.

    M. Mattson et al., [SELEX Collaboration]. Phys. Rev. Lett. 89, 112001 (2002)

  7. 7.

    A. Ocherashvili et al., [SELEX Collaboration]. Phys. Lett. B 628, 18 (2005)

  8. 8.

    J. Engelfried [SELEX Collaboration], Nucl. Phys. A 752, 121 (2005)

  9. 9.

    S. Abachi et al., [D0 Collaboration]. Phys. Rev. Lett. 74, 2632 (1995)

  10. 10.

    S.P. Baranov, V.L. Slad, Phys. Atom. Nucl. 67, 808 (2004) [Yad. Fiz. 67, 829 (2004)]

  11. 11.

    V.V. Kiselev, A.K. Likhoded, A.I. Onishchenko, Phys. Atom. Nucl. 62, 1940 (1999)

  12. 12.

    M.A. Doncheski, J. Steegborn, M.L. Stong, Phys. Rev. D 53, 1247 (1996)

  13. 13.

    V.A. Saleev, Mod. Phys. Lett. A 14, 2615 (1999)

  14. 14.

    Y.Q. Chen, S.Z. Wu, JHEP 1108, 144 (2011) [Erratum: JHEP 1109, 089 (2011)]

  15. 15.

    S.M.M. Nejad, M. Delpasand, Eur. Phys. J. A 53(9), 174 (2017)

  16. 16.

    S.M.M. Nejad, D. Mahdi, Int. J. Mod. Phys. A 30, 1550179 (2015)

  17. 17.

    S.M.M. Nejad, A. Armat, Eur. Phys. J. A 54(7), 118 (2018)

  18. 18.

    M. Salajegheh, S.M.M. Nejad, M. Nejad, H. Khanpour, S Atashbar Tehrani, Phys. Rev. C 97(5), 055201 (2018)

  19. 19.

    E. Braaten, K.M. Cheung, S. Fleming, T.C. Yuan, Phys. Rev. D 51, 4819 (1995)

  20. 20.

    E. Braaten, K.M. Cheung, T.C. Yuan, Phys. Rev. D 48, 4230 (1993)

  21. 21.

    D.M. Scott, Phys. Rev. D 18, 210 (1978)

  22. 22.

    M. Delpasand, S.M.M. Nejad, Phys. Rev. D 99(11), 114028 (2019)

  23. 23.

    M. Gell-Mann, Phys. Lett. 8, 214 (1964)

  24. 24.

    V.N. Gribov, L.N. Lipatov, Sov. J. Nucl. Phys. 15, 438 (1972) [Yad. Fiz. 15, 781 (1972)]

  25. 25.

    M. Ida, R. Kobayashi, Prog. Theor. Phys. 36, 846 (1966)

  26. 26.

    D.B. Lichtenberg, L.J. Tassie, Phys. Rev. 155, 1601 (1967)

  27. 27.

    J.C. Collins, Phys. Rev. D 58, 094002 (1998)

  28. 28.

    A.P. Martynenko, V.A. Saleev, Phys. Lett. B 385, 297 (1996)

  29. 29.

    C. Peterson, D. Schlatter, I. Schmitt, P.M. Zerwas, Phys. Rev. D 27, 105 (1983)

  30. 30.

    E. Braaten, T.C. Yuan, Phys. Rev. Lett. 71, 1673 (1993)

  31. 31.

    J.D. Bjorken, Phys. Rev. D 17, 171 (1978)

  32. 32.

    M. Suzuki, Phys. Lett. 71B, 139 (1977)

  33. 33.

    F. Amiri, C.R. Ji, Phys. Lett. B 195, 593 (1987)

  34. 34.

    G.P. Lepage, S.J. Brodsky, Phys. Rev. D 22, 2157 (1980)

  35. 35.

    M. Suzuki, Phys. Rev. D 33, 676 (1986)

  36. 36.

    M.A.G. Nobary, J. Phys. G 20, 65 (1994)

  37. 37.

    S.M.M. Nejad, Eur. Phys. J. A 52(5), 127 (2016)

  38. 38.

    S.M.M. Nejad, Eur. Phys. J. Plus 133(1), 25 (2018)

  39. 39.

    K. Kolodziej, A. Leike, R. Ruckl, Phys. Lett. B 348, 219 (1995)

  40. 40.

    J.H. Kuhn, J. Kaplan, E.G.O. Safiani, Nucl. Phys. B 157, 125 (1979)

  41. 41.

    S.M.M. Nejad, Eur. Phys. J. Plus 130(7), 136 (2015)

  42. 42.

    S.M.M. Nejad, M. Delpasand, Int. J. Mod. Phys. A 30(32), 1550179 (2015)

  43. 43.

    B. Guberina, J.H. Kuhn, R.D. Peccei, R. Ruckl, Nucl. Phys. B 174, 317 (1980)

  44. 44.

    C. Patrignani et al., [Particle Data Group], Chin. Phys. C 40(10), 100001 (2016)

  45. 45.

    S.M.M. Nejad, Phys. Rev. D 96(11), 114021 (2017)

  46. 46.

    S.M.M. Nejad, P.S. Yarahmadi, Eur. Phys. J. A 52(10), 315 (2016)

  47. 47.

    S.M.M. Nejad, E. Tajik, Eur. Phys. J. A 54(10), 174 (2018)

  48. 48.

    S.M.M. Nejad, M. Soleymaninia, A. Maktoubian, Eur. Phys. J. A 52(10), 316 (2016)

  49. 49.

    M. Salajegheh, S.M.M. Nejad, H. Khanpour, B.A. Kniehl, M. Soleymaninia, Phys. Rev. D 99(11), 114001 (2019)

  50. 50.

    M. Salajegheh, S.M.M. Nejad, M. Soleymaninia, H. Khanpour, S Atashbar Tehrani, Eur. Phys. J. C 79(12), 999 (2019)

  51. 51.

    M. Soleymaninia, H. Khanpour, S.M.M. Nejad, Phys. Rev. D 97(7), 074014 (2018)

  52. 52.

    S.M.M. Nejad, Eur. Phys. J. C 72, 2224 (2012)

  53. 53.

    S.M.M. Nejad, M. Balali, Eur. Phys. J. C 76(3), 173 (2016)

  54. 54.

    S.M.M. Nejad, S. Abbaspour, JHEP 1703, 051 (2017)

Download references

Author information

Correspondence to S. Mohammad Moosavi Nejad.

Additional information

Communicated by Reinhard Alkofer.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Delpasand, M., Moosavi Nejad, S.M. \(\Omega _{ccc}\) baryon production from gluon in vector diquark fragmentation . Eur. Phys. J. A 56, 56 (2020). https://doi.org/10.1140/epja/s10050-020-00069-0

Download citation