Elimination of spurious modes before the solution of quasiparticle random-phase-approximation equations

  • Jan Kvasil
  • Anton Repko
  • Valentin O. NesterenkoEmail author
Regular Article - Theoretical Physics


A general method for the elimination of the spurious admixtures (SA) from two-quasiparticle (2qp) intrinsic nuclear excitations is proposed. It assumes the construction of 2qp configuration space with elements orthogonal to the given spurious mode. The method exploits Quasiparticle-Random-Phase-Approximation (QRPA) matrices but does not need a prior numerical solution of QRPA, i.e. SA-elimination occurs before QRPA equations are solved. After the refined basis is prepared, it can be used in the given matrix QRPA. The method is suitable for any type of spurious modes. We demonstrate the efficiency of the method for QRPA in axially deformed 154Sm . The cases of SA arising from the center of mass motion (\( K^{\pi}=0^{-} , 1^{-}\) states), nuclear rotation (\( K^{\pi}=1^+\) states), and pairing-induced violation of the particle number (\( K^{\pi}=0^{+}\) states) are considered. The method is compared with other SA-elimination schemes.


  1. 1.
    P. Ring, P. Schuck, The Nuclear Many-Body Problem (Springer-Verlag, Berlin, 1980)CrossRefGoogle Scholar
  2. 2.
    D.J. Thouless, Nucl. Phys. 22, 78 (1961)MathSciNetCrossRefGoogle Scholar
  3. 3.
    D.J. Thouless, J.G. Valatin, Nucl. Phys. 31, 211 (1962)CrossRefGoogle Scholar
  4. 4.
    E.R. Marshalek, J. Weneser, Ann. Phys. (N.Y.) 53, 569 (1969)ADSCrossRefGoogle Scholar
  5. 5.
    D.J. Rowe, Nuclear Collective Motion (Methuen, London, 1970). Google Scholar
  6. 6.
    J.P. Blaizot, G. Ripka, Quantum Theory of Finite Systems (MIT Press, Cambridge, MA, 1986) Chapt. 10Google Scholar
  7. 7.
    D. Vretenar, A. Wandelt, P. Ring, Phys. Lett. B 487, 334 (2000)ADSCrossRefGoogle Scholar
  8. 8.
    D. Vretenar, N. Paar, P. Ring, T. Nikšić, Phys. Rev. C 65, 021301(R) (2002)ADSCrossRefGoogle Scholar
  9. 9.
    Jun Li, G. Colò, J. Meng, Phys. Rev. C 78, 064304 (2008)ADSGoogle Scholar
  10. 10.
    J. Terasaki, J. Engel, Phys. Rev. C 82, 034326 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    G. Colò, N. Van Giai, P.F. Bortignon, M.R. Quaglia, Phys. Lett. B 485, 362 (2000)ADSCrossRefGoogle Scholar
  12. 12.
    T. Nakatsukasa, T. Inakura, K. Yabana, Phys. Rev. C 76, 024318 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    K. Mizuyama, G. Colò, Phys. Rev. C 85, 024307 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    N.N. Arsenyev, A.P. Severyukhin, Phys. Part. Nucl. Lett. 7, 112 (2010)CrossRefGoogle Scholar
  15. 15.
    K. Yoshida, N. Van Giai, Phys. Rev. C 78, 064316 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    N. Hinohara, Phys. Rev. C 92, 034321 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    A. Repko. J. Kvasil, V.O. Nesterenko, Phys. Rev. C 99, 044307 (2019)ADSCrossRefGoogle Scholar
  18. 18.
    D. Bianco, F. Knapp, N. Lo Iudice, P. Veselý, F. Andreozzi, G. De Gregorio, A. Porino, J. Phys. G: Nucl. Part. Phys. 41, 025109 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    M. Bender, P.-H. Heenen, P.-G. Reinhard, Rev. Mod. Phys. 75, 121 (2003)ADSCrossRefGoogle Scholar
  20. 20.
    A. Repko, J. Kvasil, V.O. Nesterenko, P.-G. Reinhard, Eur. Phys. J. A 53, 221 (2017)ADSCrossRefGoogle Scholar
  21. 21.
    A. Repko, Theoretical description of nuclear collective excitations, PhD Thesis, Faculty of Mathematics and Physics, Charles University in Prague (2015) arXiv:1603.04383[nucl-th]Google Scholar
  22. 22.
    M. Bender, K. Rutz, P.-G. Reinhard, J.A. Maruhn, Eur. Phys. J. A 8, 59 (2000)ADSCrossRefGoogle Scholar
  23. 23.
    E. Chabanat, P. Bonche, P. Haensel, J. Meyer, R. Schaeffer, Nucl. Phys. A 635, 231 (1998)ADSCrossRefGoogle Scholar
  24. 24.
    J. Kvasil, V.O. Nesterenko, W. Kleinig, P.-G. Reinhard, P. Vesely, Phys. Rev. C 84, 034303 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    W. Kleinig, V.O. Nesterenko, J. Kvasil, P.-G. Reinhard, P. Vesely, Phys. Rev. C 78, 044313 (2008)ADSCrossRefGoogle Scholar
  26. 26.
    V.O. Nesterenko, W. Kleinig, J. Kvasil, P. Vesely, P.-G. Reinhard, D.S. Dolci, Phys. Rev. C 74, 064306 (2006)ADSCrossRefGoogle Scholar
  27. 27.
    J. Kvasil, V.O. Nesterenko, W. Kleinig, D. Bozik, P.-G. Reinhard, N. Lo Iudice, Eur. Phys. J. A 49, 119 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    V.O. Nesterenko, W. Kleinig, J. Kvasil, P. Vesely, P.-G. Reinhard, Int. J. Mod. Phys. E 17, 89 (2008)ADSCrossRefGoogle Scholar
  29. 29.
    M.N. Harakeh, A. van der Woude, Giant Resonances (Oxford University Press, 2001)Google Scholar
  30. 30.
    V.O. Nesterenko, A. Repko, J. Kvasil, P.-G. Reinhard, Phys. Rev. Lett. 120, 182501 (2018)ADSCrossRefGoogle Scholar
  31. 31.
    N. Van Giai, H. Sagawa, Nucl. Phys. A 371, 1 (1981)ADSCrossRefGoogle Scholar
  32. 32.
    L.A. Malov, V.O. Nesterenko, V.G. Soloviev, J. Phys. G: Nucl. Phys. 3, L219 (1977)ADSCrossRefGoogle Scholar
  33. 33.
    R. Alarcon, R.M. Laszewski, D.S. Dale, Phys. Rev. C 40, R1097 (1989)ADSCrossRefGoogle Scholar
  34. 34.
    C.W. Reich, Nucl. Data. Sheets 110, 2257 (2009)ADSCrossRefGoogle Scholar
  35. 35.
    J. Kvasil, R.G. Nazmitdinov, Sov. J. Part. Nucl. 17, 265 (1986)Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Jan Kvasil
    • 1
  • Anton Repko
    • 2
  • Valentin O. Nesterenko
    • 3
    • 4
    • 5
    Email author
  1. 1.Institute of Particle and Nuclear PhysicsCharles UniversityPrahaCzech Republic
  2. 2.Institute of PhysicsSlovak Academy of SciencesBratislavaSlovakia
  3. 3.Laboratory of Theoretical PhysicsJoint Institute for Nuclear ResearchDubnaRussia
  4. 4.State University “Dubna”DubnaRussia
  5. 5.Moscow Institute of Physics and TechnologyDolgoprudnyRussia

Personalised recommendations