Measurement of the 13C(n,\(\gamma\)) thermal cross section via neutron irradiation and AMS
- 32 Downloads
Abstract.
Ampoules of amorphous 99.5% enriched 13C were irradiated at the PF1b neutron beam line at the high-flux ILL research reactor in order to produce 14C atoms. The precise ratio of 14C/13C was subsequently measured at the VERA Accelerator Mass Spectrometer, allowing the 13C(n,\( \gamma\))14C thermal cross section to be accurately determined. This is the first measurement of this cross section at sub-eV energies via this technique and the result of \( 1.52 \pm 0.07\) mb for the thermal cross section is in good agreement with other recent measurements which were performed via Prompt Gamma-ray Activation Analysis.
References
- 1.W.V. Lensa, D. Vulpius, H.J. Steinmetz, N. Girke, D. Bosbach, B. Thomauske, A.W. Banford, ATW Int. Z. Kernenerg. 56, 263 (2011)Google Scholar
- 2.R.W. Mills, Z. Riaz, A.W. Banford, in Proceedings of the European Nuclear Conference - ENC 2012 (European Nuclear Society, 2012)Google Scholar
- 3.A. Wallner, M. Bichler, K. Buczak, I. Dillmann, F. Käppeler, A. Karakas, C. Lederer, M. Lugaro, K. Mair, A. Mengoni et al., Phys. Rev. C 93, 045803 (2016)ADSCrossRefGoogle Scholar
- 4.Tech. rep., ISBN: 978-1-905985-33-3 (2017)Google Scholar
- 5.F. Ajzenberg-Selove, Nucl. Phys. A 523, 1 (1991)ADSCrossRefGoogle Scholar
- 6.G.R. Hennig, Phys. Rev. 95, 92 (1954)ADSCrossRefGoogle Scholar
- 7.G.A. Bartholomew, Annu. Rev. Nucl. Part. Sci. 11, 259 (1961)ADSCrossRefGoogle Scholar
- 8.H.T. Motz, E.T. Jurney, Washington AEC Office Reports 1044 (1963)Google Scholar
- 9.S.F. Mughabghab, M.A. Lone, B.C. Robertson, Phys. Rev. C 26, 2698 (1982)ADSCrossRefGoogle Scholar
- 10.R.B. Firestone, Z. Revay, Phys. Rev. C 93, 054306 (2016)ADSCrossRefGoogle Scholar
- 11.W. Kutschera, P. Collon, H. Friedmann, R. Golser, P. Hille, A. Priller, W. Rom, P. Steier, S. Tagesen, A. Wallner et al., Nucl. Instrum. Methods B 123, 47 (1997)ADSCrossRefGoogle Scholar
- 12.H. Häse, A. Knäpfler, K. Fiederer, U. Schmidt, D. Dubbers, W. Kaiser, Nucl. Instrum. Methods A 485, 453 (2002)ADSCrossRefGoogle Scholar
- 13.H. Abele, D. Dubbers, H. Häse, M. Klein, A. Knäpfler, M. Kreuz, T. Lauer, B. Märkisch, D. Mund, V. Nesvizhevsky et al., Nucl. Instrum. Methods A 562, 407 (2006)ADSCrossRefGoogle Scholar
- 14.K. Lefmann, K. Nielsen, Neutron News 10, 20 (1999)CrossRefGoogle Scholar
- 15.P. Willendrup, E. Farhi, K. Lefmann, Physica B 350, 735 (2004)ADSCrossRefGoogle Scholar
- 16.P. Willendrup, E. Farhi, E. Knudsen, U. Filges, K. Lefmann, J. Neutron Res. 17, 35 (2014)Google Scholar
- 17.J. Meija, T.B. Coplen, M. Berglund, W.A. Brand, P. De Bievre, M. Gröning, N.E. Holden, J. Irrgeher, R.D. Loss, T. Walczyk et al., Pure Appl. Chem. 88, 293 (2016)CrossRefGoogle Scholar
- 18.S. Mughabghab, Atlas of Neutron Resonances Resonance Properties and Thermal Cross Sections (Elsevier, 2018)Google Scholar
- 19.K. Rozanski, W. Stichler, R. Gonfiantini, E.M. Scott, R.P. Beukens, B. Kromer, J. Van Der Plicht, Radiocarbon 34, 506 (1992)CrossRefGoogle Scholar
- 20.T. Weininger, Master’s Thesis, University of Vienna (2013)Google Scholar
- 21.M.J. Nadeau, P.M. Grootes, Nucl. Instrum. Methods B 294, 420 (2013)ADSCrossRefGoogle Scholar
- 22.G.C. Hanna, D.B. Primeau, P.R. Tunnicliffe, Can. J. Phys. 39, 1784 (1961)ADSCrossRefGoogle Scholar
Copyright information
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.