Advertisement

Improved STEREO simulation with a new gamma ray spectrum of excited gadolinium isotopes using FIFRELIN

  • H. Almazán
  • L. Bernard
  • A. Blanchet
  • A. BonhommeEmail author
  • C. Buck
  • A. Chebboubi
  • P. del Amo Sanchez
  • I. El Atmani
  • J. Haser
  • F. Kandzia
  • S. Kox
  • L. Labit
  • J. Lamblin
  • A. Letourneau
  • D. Lhuillier
  • M. Lindner
  • O. Litaize
  • T. Materna
  • A. Minotti
  • H. Pessard
  • J. -S. Réal
  • C. Roca
  • T. Salagnac
  • V. Savu
  • S. Schoppmann
  • V. Sergeyeva
  • T. Soldner
  • A. Stutz
  • L. Thulliez
  • M. Vialat
Open Access
Special Article - New Tools and Techniques
  • 89 Downloads

Abstract.

The STEREO experiment measures the electron antineutrino spectrum emitted in a research reactor using the inverse beta decay reaction on H nuclei in a gadolinium loaded liquid scintillator. The detection is based on a signal coincidence of a prompt positron and a delayed neutron capture event. The simulated response of the neutron capture on gadolinium is crucial for the comparison with data, in particular in the case of the detection efficiency. Among all stable isotopes, 155Gd and 157Gd have the highest cross sections for thermal neutron capture. The excited nuclei after the neutron capture emit gamma rays with a total energy of about 8MeV. The complex level schemes of 156Gd and 158Gd are a challenge for the modeling and prediction of the deexcitation spectrum, especially for compact detectors where gamma rays can escape the active volume. With a new description of the Gd (n,\( \gamma\)) cascades obtained using the FIFRELIN code, the agreement between simulation and measurements with a neutron calibration source was significantly improved in the STEREO experiment. A database of ten millions of deexcitation cascades for each isotope has been generated and is now available for the user.

Notes

Acknowledgments

Open Access funding provided by Max Planck Society.

References

  1. 1.
    N. Allemandou et al., JINST 13, P07009 (2018)CrossRefGoogle Scholar
  2. 2.
    H. Almazán et al., Phys. Rev. Lett. 121, 161801 (2018)ADSCrossRefGoogle Scholar
  3. 3.
    C. Buck, B. Gramlich, M. Lindner, C. Roca, S. Schoppmann, JINST 14, P01027 (2019)ADSCrossRefGoogle Scholar
  4. 4.
    I. Alekseev et al., Phys. Lett. B7 87, 56 (2018)CrossRefGoogle Scholar
  5. 5.
    D. Adey, Improved Measurement of the Reactor Antineutrino Flux at Daya Bay, arXiv:1808.10836 (2018)Google Scholar
  6. 6.
    K. Hagiwara et al., Prog. Theor. Exp. Phys. 2019, 023D01 (2019)CrossRefGoogle Scholar
  7. 7.
    O. Litaize et al., Nucl. Data Sheets 118, 216 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    O. Litaize et al., Eur. Phys. J. A 51, 1 (2015)CrossRefGoogle Scholar
  9. 9.
    O. Litaize et al., EPJ Web of Conferences 169, 00012 (2018)CrossRefGoogle Scholar
  10. 10.
    F. Bečvář, Nucl. Instrum. Methods Phys. Res. A 417, 434 (1998)ADSCrossRefGoogle Scholar
  11. 11.
    D. Regnier et al., Comput. Phys. Commun. 201, 19 (2016)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    D. Brown, M. Chadwick, R. Capote et al., Nucl. Data Sheets 148, 1 (2018)ADSCrossRefGoogle Scholar
  13. 13.
    K.K. Shibata et al., J. Nucl. Sci. Technol. 48, 1 (2011)CrossRefGoogle Scholar
  14. 14.
    S.F. Mughabghab, Atlas of Neutron Resonances: Resonance Parameters and Thermal Cross Sections $Z=1-100$ (Elsevier Science, 2006)Google Scholar
  15. 15.
    R. Capote et al., Nucl. Data Sheets 110, 3107 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    H.A. Bethe, Phys. Rev. 50, 332 (1936)ADSCrossRefGoogle Scholar
  17. 17.
    A. Gilbert, A.G.W. Cameron, Can. J. Phys. 43, 1446 (1965)ADSCrossRefGoogle Scholar
  18. 18.
    E. Porter, C.R.G. Thomas, Phys. Rev. 104, 483 (1956)ADSCrossRefGoogle Scholar
  19. 19.
    T. Kibedi et al., Nucl. Instrum. Methods Phys. Res. A 589, 202 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    J. Kopecky, M. Uhl, Phys. Rev. C 41, 1941 (1990)ADSCrossRefGoogle Scholar
  21. 21.
    D.M. Brink, Nucl. Phys. 4, 215 (1957)CrossRefGoogle Scholar
  22. 22.
    S. Agostinelli et al., Nucl. Instrum. Methods Phys. Res. A 506, 250 (2003)ADSCrossRefGoogle Scholar
  23. 23.
  24. 24.
    J. Scherzinger et al., Appl. Radiat. Isot. 98, 74 (2015)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  • H. Almazán
    • 1
  • L. Bernard
    • 2
  • A. Blanchet
    • 3
  • A. Bonhomme
    • 1
    • 3
    Email author
  • C. Buck
    • 1
  • A. Chebboubi
    • 6
  • P. del Amo Sanchez
    • 4
  • I. El Atmani
    • 3
  • J. Haser
    • 1
  • F. Kandzia
    • 5
  • S. Kox
    • 2
  • L. Labit
    • 4
  • J. Lamblin
    • 2
  • A. Letourneau
    • 3
  • D. Lhuillier
    • 3
  • M. Lindner
    • 1
  • O. Litaize
    • 6
  • T. Materna
    • 3
  • A. Minotti
    • 3
  • H. Pessard
    • 4
  • J. -S. Réal
    • 2
  • C. Roca
    • 1
  • T. Salagnac
    • 2
  • V. Savu
    • 3
  • S. Schoppmann
    • 1
  • V. Sergeyeva
    • 4
  • T. Soldner
    • 5
  • A. Stutz
    • 2
  • L. Thulliez
    • 3
  • M. Vialat
    • 2
  1. 1.Max-Planck-Institut für KernphysikHeidelbergGermany
  2. 2.Univ. Grenoble Alpes, CNRS, Grenoble INP, LPSC-IN2P3GrenobleFrance
  3. 3.IRFU, CEA, Université Paris-SaclayGif-sur-YvetteFrance
  4. 4.Univ. Grenoble Alpes, Université Savoie Mont Blanc, CNRS/IN2P3, LAPPAnnecyFrance
  5. 5.Institut Laue-LangevinGrenoble Cedex 9France
  6. 6.CEA, DEN, DER, SPRCSaint Paul Lez DuranceFrance

Personalised recommendations