Advertisement

Pion and kaon structure at the electron-ion collider

  • Arlene C. Aguilar
  • Zafir Ahmed
  • Christine Aidala
  • Salina Ali
  • Vincent Andrieux
  • John Arrington
  • Adnan Bashir
  • Vladimir Berdnikov
  • Daniele Binosi
  • Lei Chang
  • Chen Chen
  • Muyang Chen
  • João Pacheco B. C. de Melo
  • Markus Diefenthaler
  • Minghui Ding
  • Rolf Ent
  • Tobias Frederico
  • Fei Gao
  • Ralf W. Gothe
  • Mohammad Hattawy
  • Timothy J. Hobbs
  • Tanja Horn
  • Garth M. Huber
  • Shaoyang Jia
  • Cynthia Keppel
  • Gastão Krein
  • Huey-Wen Lin
  • Cédric Mezrag
  • Victor Mokeev
  • Rachel Montgomery
  • Hervé Moutarde
  • Pavel Nadolsky
  • Joannis Papavassiliou
  • Kijun Park
  • Ian L. Pegg
  • Jen-Chieh Peng
  • Stephane Platchkov
  • Si-Xue Qin
  • Khépani Raya
  • Paul Reimer
  • David G. Richards
  • Craig D. RobertsEmail author
  • Jose Rodríguez-Quintero
  • Nobuo Sato
  • Sebastian M. Schmidt
  • Jorge Segovia
  • Arun Tadepalli
  • Richard Trotta
  • Zhihong Ye
  • Rikutaro Yoshida
  • Shu-Sheng Xu
Review
  • 18 Downloads

Abstract.

Understanding the origin and dynamics of hadron structure and in turn that of atomic nuclei is a central goal of nuclear physics. This challenge entails the questions of how does the roughly 1GeV mass-scale that characterizes atomic nuclei appear; why does it have the observed value; and, enigmatically, why are the composite Nambu-Goldstone (NG) bosons in quantum chromodynamics (QCD) abnormally light in comparison? In this perspective, we provide an analysis of the mass budget of the pion and proton in QCD; discuss the special role of the kaon, which lies near the boundary between dominance of strong and Higgs mass-generation mechanisms; and explain the need for a coherent effort in QCD phenomenology and continuum calculations, in exa-scale computing as provided by lattice QCD, and in experiments to make progress in understanding the origins of hadron masses and the distribution of that mass within them. We compare the unique capabilities foreseen at the electron-ion collider (EIC) with those at the hadron-electron ring accelerator (HERA), the only previous electron-proton collider; and describe five key experimental measurements, enabled by the EIC and aimed at delivering fundamental insights that will generate concrete answers to the questions of how mass and structure arise in the pion and kaon, the Standard Model's NG modes, whose surprisingly low mass is critical to the evolution of our Universe.

Notes

References

  1. 1.
    J.M. Cornwall, Phys. Rev. D 26, 1453 (1982)ADSCrossRefGoogle Scholar
  2. 2.
    A.C. Aguilar, D. Binosi, J. Papavassiliou, Front. Phys. China 11, 111203 (2016)Google Scholar
  3. 3.
    T. Horn, C.D. Roberts, J. Phys. G 43, 073001 (2016)ADSCrossRefGoogle Scholar
  4. 4.
    Y. Nambu, Phys. Rev. 117, 648 (1960)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    J. Goldstone, Nuovo Cimento 19, 154 (1961)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Particle Data Group (M. Tanabashi et al.), Phys. Rev. D 98, 030001 (2018)Google Scholar
  7. 7.
    M.S. Bhagwat, M.A. Pichowsky, C.D. Roberts, P.C. Tandy, Phys. Rev. C 68, 015203 (2003)ADSCrossRefGoogle Scholar
  8. 8.
    P.O. Bowman et al., Phys. Rev. D 71, 054507 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    M.S. Bhagwat, P.C. Tandy, AIP Conf. Proc. 842, 225 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    P. Maris, C.D. Roberts, P.C. Tandy, Phys. Lett. B 420, 267 (1998)ADSCrossRefGoogle Scholar
  11. 11.
    S.-X. Qin, C.D. Roberts, S.M. Schmidt, Phys. Lett. B 733, 202 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    D. Binosi, L. Chang, S.-X. Qin, J. Papavassiliou, C.D. Roberts, Phys. Rev. D 93, 096010 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    C.D. Roberts, Few Body Syst. 58, 5 (2017)ADSCrossRefGoogle Scholar
  14. 14.
    X.-D. Ji, Phys. Rev. D 52, 271 (1995)ADSCrossRefGoogle Scholar
  15. 15.
    Y.-B. Yang et al., Phys. Rev. Lett. 121, 212001 (2018) arXiv:1808.08677ADSCrossRefGoogle Scholar
  16. 16.
    C. Lorcé, Eur. Phys. J. C 78, 120 (2018) arXiv:1706.05853ADSCrossRefGoogle Scholar
  17. 17.
    D. Kharzeev, H. Satz, A. Syamtomov, G. Zinovjev, Eur. Phys. J. C 9, 459 (1999)ADSCrossRefGoogle Scholar
  18. 18.
    S. Joosten, Z.E. Meziani, PoS QCDEV2017, 017 (2018)Google Scholar
  19. 19.
    J. Tarrús Castellà, G. Krein, Phys. Rev. D 98, 014029 (2018)ADSCrossRefGoogle Scholar
  20. 20.
    M. Gell-Mann, R.J. Oakes, B. Renner, Phys. Rev. 175, 2195 (1968)ADSCrossRefGoogle Scholar
  21. 21.
    S.J. Brodsky, C.D. Roberts, R. Shrock, P.C. Tandy, Phys. Rev. C 85, 065202 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    Y.-B. Yang et al., Phys. Rev. D 91, 074516 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    C. Lorcé, JHEP 08, 045 (2015)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    Y.L. Dokshitzer, Sov. Phys. JETP 46, 641 (1977)ADSGoogle Scholar
  25. 25.
    V.N. Gribov, L.N. Lipatov, Sov. J. Nucl. Phys. 15, 438 (1972)Google Scholar
  26. 26.
    L.N. Lipatov, Sov. J. Nucl. Phys. 20, 94 (1975)Google Scholar
  27. 27.
    G. Altarelli, G. Parisi, Nucl. Phys. B 126, 298 (1977)ADSCrossRefGoogle Scholar
  28. 28.
    G. Altarelli, Phys. Rep. 81, 1 (1982)ADSCrossRefGoogle Scholar
  29. 29.
    P.J. Sutton, A.D. Martin, R.G. Roberts, W.J. Stirling, Phys. Rev. D 45, 2349 (1992)ADSCrossRefGoogle Scholar
  30. 30.
    P.C. Barry, N. Sato, W. Melnitchouk, C.-R. Ji, Phys. Rev. Lett. 121, 152001 (2018)ADSCrossRefGoogle Scholar
  31. 31.
    V.V. Flambaum et al., Few Body Syst. 38, 31 (2006)ADSCrossRefGoogle Scholar
  32. 32.
    Y. Nambu, G. Jona-Lasinio, Phys. Rev. 122, 345 (1961)ADSCrossRefGoogle Scholar
  33. 33.
    G. Wang, J. Liang, T. Draper, K.-F. Liu, Y.-B. Yang, PoS LATTICE2018, 127 (2018)Google Scholar
  34. 34.
    A.J. Chambers et al., Phys. Rev. D 96, 114509 (2017)ADSCrossRefGoogle Scholar
  35. 35.
    J. Koponen, A.C. Zimermmane-Santos, C.T.H. Davies, G.P. Lepage, A.T. Lytle, Phys. Rev. D 96, 054501 (2017)ADSCrossRefGoogle Scholar
  36. 36.
    M. Chen, M. Ding, L. Chang, C.D. Roberts, Phys. Rev. D 98, 091505(R) (2018)ADSCrossRefGoogle Scholar
  37. 37.
    S.J. Brodsky, G.F. de Teramond, Phys. Rev. Lett. 96, 201601 (2006)ADSCrossRefGoogle Scholar
  38. 38.
    L. Chang et al., Phys. Rev. Lett. 110, 132001 (2013)ADSCrossRefGoogle Scholar
  39. 39.
    J.-H. Zhang, J.-W. Chen, X. Ji, L. Jin, H.-W. Lin, Phys. Rev. D 95, 094514 (2017)ADSCrossRefGoogle Scholar
  40. 40.
    S. Jia, J.P. Vary, Phys. Rev. C 99, 035206 (2019)ADSCrossRefGoogle Scholar
  41. 41.
    G.S. Bali et al., Phys. Rev. D 98, 094507 (2018)ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    J. Volmer et al., Phys. Rev. Lett. 86, 1713 (2001)ADSCrossRefGoogle Scholar
  43. 43.
    T. Horn et al., Phys. Rev. Lett. 97, 192001 (2006)ADSCrossRefGoogle Scholar
  44. 44.
    T. Horn et al., Phys. Rev. C 78, 058201 (2008)ADSCrossRefGoogle Scholar
  45. 45.
    H.P. Blok et al., Phys. Rev. C 78, 045202 (2008)ADSCrossRefGoogle Scholar
  46. 46.
    G. Huber et al., Phys. Rev. C 78, 045203 (2008)ADSCrossRefGoogle Scholar
  47. 47.
    G.M. Huber, D. Gaskell, Measurement of the Charged Pion Form Factor to High $Q^2$, approved Jefferson Lab 12GeV Experiment E12-06-101 (2006)Google Scholar
  48. 48.
    T. Horn, G.M. Huber, Scaling Study of the L/T-Separated Pion Electroproduction Cross Section at 11GeV, approved Jefferson Lab 12GeV Experiment E12-07-105 (2007)Google Scholar
  49. 49.
    T. Horn, EPJ Web of Conferences 137, 05005 (2017)CrossRefGoogle Scholar
  50. 50.
    J.D. Sullivan, Phys. Rev. D 5, 1732 (1972)ADSCrossRefGoogle Scholar
  51. 51.
    W. Melnitchouk, A.W. Thomas, Z. Phys. A 353, 311 (1995)ADSCrossRefGoogle Scholar
  52. 52.
    Y. Salamu, C.-R. Ji, W. Melnitchouk, P. Wang, Phys. Rev. Lett. 114, 122001 (2015)ADSCrossRefGoogle Scholar
  53. 53.
    Y. Salamu, C.-R. Ji, W. Melnitchouk, A.W. Thomas, P. Wang, Phys. Rev. D 99, 014041 (2019)ADSCrossRefGoogle Scholar
  54. 54.
    S.-X. Qin, C. Chen, C. Mezrag, C.D. Roberts, Phys. Rev. C 97, 015203 (2018)ADSCrossRefGoogle Scholar
  55. 55.
    ZEUS Calorimeter Group (A. Andresen et al.), Nucl. Instrum. Methods A 290, 95 (1990)ADSCrossRefGoogle Scholar
  56. 56.
    E. Di Capua et al., Nucl. Instrum. Methods A 378, 221 (1996)ADSCrossRefGoogle Scholar
  57. 57.
    S. Lee et al., Nucl. Instrum. Methods A 866, 76 (2017)ADSCrossRefGoogle Scholar
  58. 58.
    S. Chekanov et al., Nucl. Phys. B 776, 1 (2007)ADSCrossRefGoogle Scholar
  59. 59.
    D. Adikaram, Measurement of Tagged Deep Inelastic Scattering (TDIS), approved Jefferson Lab experiment E12-15-006 (2015)Google Scholar
  60. 60.
    D. Adikaram, Measurement of kaon Structure Function through Tagged Deep Inelastic Scattering (TDIS), approved Jefferson Lab experiment C12-15-006A (2015)Google Scholar
  61. 61.
    J.R. McKenney, N. Sato, W. Melnitchouk, C.-R. Ji, Phys. Rev. D 93, 054011 (2016)ADSCrossRefGoogle Scholar
  62. 62.
    M. Ding, Symmetry, symmetry breaking, and pion parton distributions, arXiv:1905.05208 [nucl-th]Google Scholar
  63. 63.
    O. Denisov, Letter of Intent (Draft 2.0): A New QCD facility at the M2 beam line of the CERN SPS, arXiv:1808.00848 [hep-ex]Google Scholar
  64. 64.
    K. Wijesooriya, P.E. Reimer, R.J. Holt, Phys. Rev. C 72, 065203 (2005)ADSCrossRefGoogle Scholar
  65. 65.
    M. Aicher, A. Schäfer, W. Vogelsang, Phys. Rev. Lett. 105, 252003 (2010)ADSCrossRefGoogle Scholar
  66. 66.
    K. Kovařík, P.M. Nadolsky, D.E. Soper, Hadron structure in high-energy collisions, arXiv:1905.06957 [hep-ph]Google Scholar
  67. 67.
    W. Broniowski, E. Ruiz Arriola, Phys. Rev. D 78, 094011 (2008)ADSCrossRefGoogle Scholar
  68. 68.
    T. Frederico, E. Pace, B. Pasquini, G. Salme, Phys. Rev. D 80, 054021 (2009)ADSCrossRefGoogle Scholar
  69. 69.
    C. Mezrag et al., Phys. Lett. B 741, 190 (2015)ADSCrossRefGoogle Scholar
  70. 70.
    S. Kumano, Q.-T. Song, O.V. Teryaev, Phys. Rev. D 97, 014020 (2018)ADSCrossRefGoogle Scholar
  71. 71.
    G.F. de Teramond et al., Phys. Rev. Lett. 120, 182001 (2018)ADSCrossRefGoogle Scholar
  72. 72.
    P.E. Shanahan, W. Detmold, Phys. Rev. D 99, 014511 (2019)ADSCrossRefGoogle Scholar
  73. 73.
    J. Lan, C. Mondal, S. Jia, X. Zhao, J.P. Vary, Phys. Rev. Lett. 122, 172001 (2019)ADSCrossRefGoogle Scholar
  74. 74.
    C. Lorcé, B. Pasquini, P. Schweitzer, Eur. Phys. J. C 76, 415 (2016)ADSCrossRefGoogle Scholar
  75. 75.
    M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, Nucl. Phys. B 136, 157 (1978) (Yad. Fiz. 27ADSCrossRefGoogle Scholar
  76. 76.
    Y.-B. Yang et al., Phys. Rev. D 98, 074506 (2018)ADSCrossRefGoogle Scholar
  77. 77.
    D. Binosi, C. Mezrag, J. Papavassiliou, C.D. Roberts, J. Rodríguez-Quintero, Phys. Rev. D 96, 054026 (2017)ADSCrossRefGoogle Scholar
  78. 78.
    J. Rodríguez-Quintero, D. Binosi, C. Mezrag, J. Papavassiliou, C.D. Roberts, Few Body Syst. 59, 121 (2018)ADSCrossRefGoogle Scholar
  79. 79.
    G.P. Lepage, S.J. Brodsky, Phys. Lett. B 87, 359 (1979)ADSCrossRefGoogle Scholar
  80. 80.
    A.V. Efremov, A.V. Radyushkin, Phys. Lett. B 94, 245 (1980)ADSCrossRefGoogle Scholar
  81. 81.
    G.P. Lepage, S.J. Brodsky, Phys. Rev. D 22, 2157 (1980)ADSCrossRefGoogle Scholar
  82. 82.
    L. Chang, I.C. Cloët, C.D. Roberts, S.M. Schmidt, P.C. Tandy, Phys. Rev. Lett. 111, 141802 (2013)ADSCrossRefGoogle Scholar
  83. 83.
    F. Gao, L. Chang, Y.-X. Liu, C.D. Roberts, P.C. Tandy, Phys. Rev. D 96, 034024 (2017)ADSCrossRefGoogle Scholar
  84. 84.
    C. Chen, L. Chang, C.D. Roberts, S. Wan, H.-S. Zong, Phys. Rev. D 93, 074021 (2016)ADSCrossRefGoogle Scholar
  85. 85.
    S.-S. Xu, L. Chang, C.D. Roberts, H.-S. Zong, Phys. Rev. D 97, 094014 (2018)ADSCrossRefGoogle Scholar
  86. 86.
    J. Badier et al., Phys. Lett. B 93, 354 (1980)ADSCrossRefGoogle Scholar
  87. 87.
    K.-F. Liu, S.-J. Dong, Phys. Rev. Lett. 72, 1790 (1994)ADSCrossRefGoogle Scholar
  88. 88.
    X. Ji, Phys. Rev. Lett. 110, 262002 (2013)ADSCrossRefGoogle Scholar
  89. 89.
    A. Radyushkin, Phys. Lett. B 767, 314 (2017)ADSMathSciNetCrossRefGoogle Scholar
  90. 90.
    A.V. Radyushkin, Phys. Rev. D 96, 034025 (2017)ADSMathSciNetCrossRefGoogle Scholar
  91. 91.
    A.J. Chambers et al., Phys. Rev. Lett. 118, 242001 (2017)ADSCrossRefGoogle Scholar
  92. 92.
    J.-W. Chen, First direct lattice-QCD calculation of the $x$-dependence of the pion parton distribution function, arXiv:1804.01483 [hep-lat]Google Scholar
  93. 93.
    N. Karthik et al., PoS LATTICE2018, 109 (2018)Google Scholar
  94. 94.
    J. Karpie, K. Orginos, A. Rothkopf, S. Zafeiropoulos, JHEP 04, 057 (2019)ADSCrossRefGoogle Scholar
  95. 95.
    R.S. Sufian et al., Phys. Rev. D 99, 074507 (2019)ADSCrossRefGoogle Scholar
  96. 96.
    T. Izubuchi, Valence parton distribution function of pion from fine lattice, arXiv:1905.06349 [hep-lat]Google Scholar
  97. 97.
    C. Best et al., Phys. Rev. D 56, 2743 (1997)ADSCrossRefGoogle Scholar
  98. 98.
    W. Detmold, W. Melnitchouk, A.W. Thomas, Phys. Rev. D 68, 034025 (2003)ADSCrossRefGoogle Scholar
  99. 99.
    D. Brommel et al., PoS LAT2007, 140 (2007)Google Scholar
  100. 100.
    M. Oehm et al., Phys. Rev. D 99, 014508 (2019)ADSCrossRefGoogle Scholar
  101. 101.
    M.B. Hecht, C.D. Roberts, S.M. Schmidt, Phys. Rev. C 63, 025213 (2001)ADSCrossRefGoogle Scholar
  102. 102.
    L. Chang et al., Phys. Lett. B 737, 23 (2014)ADSCrossRefGoogle Scholar
  103. 103.
    J.S. Conway et al., Phys. Rev. D 39, 92 (1989)ADSCrossRefGoogle Scholar
  104. 104.
    V.N. Gribov, L.N. Lipatov, Phys. Lett. B 37, 78 (1971)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Arlene C. Aguilar
    • 1
  • Zafir Ahmed
    • 2
  • Christine Aidala
    • 3
  • Salina Ali
    • 4
  • Vincent Andrieux
    • 5
    • 6
  • John Arrington
    • 7
  • Adnan Bashir
    • 8
  • Vladimir Berdnikov
    • 4
  • Daniele Binosi
    • 9
  • Lei Chang
    • 10
  • Chen Chen
    • 11
  • Muyang Chen
    • 10
  • João Pacheco B. C. de Melo
    • 12
  • Markus Diefenthaler
    • 13
  • Minghui Ding
    • 9
    • 10
  • Rolf Ent
    • 13
  • Tobias Frederico
    • 14
  • Fei Gao
    • 15
  • Ralf W. Gothe
    • 16
  • Mohammad Hattawy
    • 17
  • Timothy J. Hobbs
    • 18
  • Tanja Horn
    • 4
  • Garth M. Huber
    • 2
  • Shaoyang Jia
    • 19
  • Cynthia Keppel
    • 13
  • Gastão Krein
    • 20
  • Huey-Wen Lin
    • 21
  • Cédric Mezrag
    • 22
  • Victor Mokeev
    • 13
  • Rachel Montgomery
    • 23
  • Hervé Moutarde
    • 24
  • Pavel Nadolsky
    • 18
  • Joannis Papavassiliou
    • 25
  • Kijun Park
    • 13
  • Ian L. Pegg
    • 4
  • Jen-Chieh Peng
    • 5
  • Stephane Platchkov
    • 24
  • Si-Xue Qin
    • 26
  • Khépani Raya
    • 10
  • Paul Reimer
    • 7
  • David G. Richards
    • 13
  • Craig D. Roberts
    • 27
    • 28
    Email author
  • Jose Rodríguez-Quintero
    • 29
  • Nobuo Sato
    • 13
  • Sebastian M. Schmidt
    • 30
  • Jorge Segovia
    • 31
  • Arun Tadepalli
    • 13
  • Richard Trotta
    • 4
  • Zhihong Ye
    • 7
  • Rikutaro Yoshida
    • 13
  • Shu-Sheng Xu
    • 32
  1. 1.University of Campinas - UNICAMP, Institute of Physics “Gled Wataghin”CampinasBrazil
  2. 2.University of ReginaReginaCanada
  3. 3.University of MichiganAnn ArborUSA
  4. 4.Catholic University of AmericaWashingtonUSA
  5. 5.University of Illinois at Urbana-ChampaignUrbanaUSA
  6. 6.CERNGenevaSwitzerland
  7. 7.Argonne National LaboratoryLemontUSA
  8. 8.Instituto de Física y MatemáticasUniversidad Michoacana de San Nicolás de HidalgoMoreliaMexico
  9. 9.European Centre for Theoretical Studies in Nuclear Physics and Related Areas (ECT*) and Fondazione Bruno Kessler Villa TambosiVillazzano (TN)Italy
  10. 10.School of PhysicsNankai UniversityTianjinChina
  11. 11.Institut für Theoretische PhysikJustus-Liebig-Universität GießenGießenGermany
  12. 12.Laboratório de Física Teórica e Computacional - LFTCUniversidade Cruzeiro do Sul / Universidade Cidade de São PauloSão PauloBrazil
  13. 13.Thomas Jefferson National Accelerator FacilityNewport NewsUSA
  14. 14.Instituto Tecnológico de AeronáuticaSão José dos CamposBrazil
  15. 15.Institut für Theoretische PhysikUniversität HeidelbergHeidelbergGermany
  16. 16.University of South CarolinaColumbiaUSA
  17. 17.Old Dominion UniversityNorfolkUSA
  18. 18.Southern Methodist UniversityDallasUSA
  19. 19.Iowa State UniversityAmesUSA
  20. 20.Instituto de Física TeóricaUniversidade Estadual PaulistaSão PauloBrazil
  21. 21.Michigan State UniversityEast LansingUSA
  22. 22.Istituto Nazionale di Fisica Nucleare, Sezione di RomaRomaItaly
  23. 23.University of GlasgowGlasgow, ScotlandUK
  24. 24.IRFU, CEA, Université Paris-SaclayGif-sur-YvetteFrance
  25. 25.Department of Theoretical Physics and IFICUniversity of Valencia and CSICValenciaSpain
  26. 26.Department of PhysicsChongqing UniversityChongqingChina
  27. 27.School of PhysicsNanjing UniversityNanjingChina
  28. 28.Institute for Nonperturbative PhysicsNanjing UniversityNanjingChina
  29. 29.Department of Integrated Sciences and Centre for Advanced Studies in Physics, Mathematics and ComputationUniversity of HuelvaHuelvaSpain
  30. 30.Institute for Advanced Simulation, Forschungszentrum Jülich and JARAJülichGermany
  31. 31.Departamento de Sistemas Físicos, Químicos y NaturalesUniversidad Pablo de OlavideSevillaSpain
  32. 32.College of ScienceNanjing University of Posts and TelecommunicationsNanjingChina

Personalised recommendations