Advertisement

Developments towards the delivery of selenium ion beams at ISOLDE

  • K. ChrysalidisEmail author
  • J. Ballof
  • Ch. E. Düllmann
  • V. N. Fedosseev
  • C. Granados
  • B. A. Marsh
  • Y. Martinez Palenzuela
  • J. P. Ramos
  • S. Rothe
  • T. Stora
  • K. Wendt
Open Access
Regular Article - Experimental Physics
  • 53 Downloads

Abstract.

The production of selenium ion beams has been investigated at the CERN-ISOLDE facility via two different ionization methods. Whilst molecular selenium (SeCO) beams were produced at ISOLDE since the early 1990s, recent attempts at reliably reproducing these results have so far been unsuccessful. Here we report on tests of a step-wise resonance laser ionization scheme for atomic selenium using the ISOLDE Resonance Ionization Laser Ion Source (RILIS). For stable selenium an ionization efficiency of 1% was achieved. During the first on-line radioisotope production tests, a yield of \( \approx 2.4 \times 10^4\) ions/μC was measured for 71Se+, using a ZrO2 target with an electron impact ion source. In parallel, an approach for extraction of molecular carbonyl selenide (SeCO) beams was tested. The same ion source and target material were used and a maximum yield of \( \approx 3.6\times 10^5\) ions/μ C of 71SeCO+ was measured.

Notes

References

  1. 1.
    M.J.G. Borge, B. Jonson, J. Phys. G 44, 044011 (2017)ADSCrossRefGoogle Scholar
  2. 2.
    R. Catherall et al., J. Phys. G 44, 094002 (2017)ADSCrossRefGoogle Scholar
  3. 3.
    U. Köster, in Exotic Nuclei and Atomic Masses (ENAM 98) (ASCE, 1998) pp. 989--994Google Scholar
  4. 4.
    L. Penescu et al., Rev. Sci. Instrum. 81, 02A906 (2010)CrossRefGoogle Scholar
  5. 5.
    V.I. Mishin et al., Nucl. Instrum. Methods B 73, 550 (1993)ADSCrossRefGoogle Scholar
  6. 6.
    D.A. Fink et al., Nucl. Instrum. Methods B 344, 83 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    T. Day Goodacre et al., Nucl. Instrum. Methods B 376, 39 (2016)ADSCrossRefGoogle Scholar
  8. 8.
    Y. Martinez Palenzuela et al., Nucl. Instrum. Methods B 431, 59 (2018)ADSCrossRefGoogle Scholar
  9. 9.
    A. M. Hurst et al., Phys. Rev. Lett. 98, 072501 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    D. Doherty, J. Ljungvall, Technical report CERN-INTC-2014-057. INTC-P-423 (2014)Google Scholar
  11. 11.
    N. Orce, Technical Report CERN-INTC-2012-067. INTC-P-368 (2012)Google Scholar
  12. 12.
    U. Köster et al., Nucl. Instrum. Methods B 204, 303 (2003)ADSCrossRefGoogle Scholar
  13. 13.
    F. Wenander, JINST 5, C10004 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    V.N. Fedosseev et al., J. Phys. G 44, 084006 (2017)ADSCrossRefGoogle Scholar
  15. 15.
    T. Day Goodacre et al., Nucl. Instrum. Methods A 830, 510 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    T.E. Cocolios et al., Nucl. Instrum. Methods B 266, 4403 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    NIST database, extracted January (2017)Google Scholar
  18. 18.
    J.E. Ruedy, R.C. Gibbs, Phys. Rev. 46, 880 (1934)ADSCrossRefGoogle Scholar
  19. 19.
    C. Morillon, J. Vergès, Phys. Scr. 10, 227 (1974)ADSCrossRefGoogle Scholar
  20. 20.
    V.N. Fedosseev et al., Opt. Spectrosc. 57, 552 (1984)ADSGoogle Scholar
  21. 21.
    T. Day Goodacre et al., Nucl. Instrum. Methods A 830, 510 (2016)ADSCrossRefGoogle Scholar
  22. 22.
    H.L. Ravn, S. Sundell, L. Westgaard, Nucl. Instrum. Methods 123, 131 (1975)ADSCrossRefGoogle Scholar
  23. 23.
    B. Marsh, Contribution to the CAS-CERN Accelerator School: Ion Sources, Senec, Slovakia, 29 May - 8 June 2012, https://cds.cern.ch/record/1445287 (CERN, 2013)
  24. 24.
    E. Hageboet al., Nucl. Instrum. Methods B 70, 165 (1992)ADSCrossRefGoogle Scholar
  25. 25.
    S. Sundell, H. Ravn, Nucl. Instrum. Methods B 70, 160 (1992)ADSCrossRefGoogle Scholar
  26. 26.
    T.G. Pearson, P.L. Robinson, J. Chem. Soc. (Resumed), pp. 652--660 (1932)Google Scholar
  27. 27.
    L. Penescu, Techniques to produce and accelerate radioactive ion beams, PhD Thesis, Bucharest, Polytechnic Inst (2009)Google Scholar
  28. 28.
    M. Turrión et al., Nucl. Instrum. Methods B 266, 4674 (2008)ADSCrossRefGoogle Scholar
  29. 29.
    R Kirchner, Nucl. Instrum. Methods B 70, 186 (1992)ADSCrossRefGoogle Scholar
  30. 30.
    A. Roine, HSC Chemistry 7.1. http://www.hsc-chemistry.net (2010) (online
  31. 31.
    J.R. Marquart, R.L. Belford, H.A. Fraenkel, Int. J. Chem. Kinet. 9, 671 (1977)CrossRefGoogle Scholar
  32. 32.
    J.P. Ramos, Nucl. Instrum. Methods B,  https://doi.org/10.1016/j.nimb.2019.05.045
  33. 33.
    A. Kelic, arXiv:0906.4193 (2009)Google Scholar
  34. 34.
    R.N. Wolf et al., Nucl. Instrum. Methods A 686, 82 (2012)ADSCrossRefGoogle Scholar

Copyright information

© CERN 2019

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  • K. Chrysalidis
    • 1
    • 2
    Email author
  • J. Ballof
    • 1
    • 3
  • Ch. E. Düllmann
    • 3
    • 4
    • 5
  • V. N. Fedosseev
    • 1
  • C. Granados
    • 1
  • B. A. Marsh
    • 1
  • Y. Martinez Palenzuela
    • 1
    • 6
  • J. P. Ramos
    • 1
  • S. Rothe
    • 1
  • T. Stora
    • 1
  • K. Wendt
    • 2
  1. 1.CERNGenevaSwitzerland
  2. 2.Institut für PhysikJohannes Gutenberg-UniversitätMainzGermany
  3. 3.Institiut für KernchemieJohannes Gutenberg-UniversitätMainzGermany
  4. 4.Helmholtz-Institut MainzMainzGermany
  5. 5.GSI Helmholtzzentrum für SchwerionenforschungDarmstadtGermany
  6. 6.KU Leuven, Instituut voor Kern- en StralingsfysicaLeuvenBelgium

Personalised recommendations