Advertisement

New collective structures in the 163Yb nucleus

  • M. A. SitholeEmail author
  • J. F. Sharpey Schafer
  • S. N. T. Majola
  • T. D. Bucher
  • T. R. S. Dinoko
  • S. S. Ntshangase
  • E. A. Lawrie
  • N. A. Khumalo
  • S. Jongile
  • L. Mdletshe
  • R. A. Bark
  • N. Erasmus
  • P. Jones
  • B. V. Kheswa
  • J. J. Lawrie
  • L. Makhathini
  • K. L. Malatji
  • B. Maqabuka
  • S. P. Noncolela
  • J. Ndayishimye
  • O. Shirinda
  • B. R. Zikhali
  • P. L. Masiteng
Regular Article - Experimental Physics

Abstract.

The 152Sm(16O, 5n)163Yb reaction at a beam energy of 93 MeV was used to study the excited states of 163Yb with the AFRODITE \(\gamma\)-ray spectrometer at iThemba LABS. The level scheme of 163Yb has been extended and new rotational bands established. The band based on the ground-state has been extended from a spin of 11/2- to spin 43/2-. A high-K band based on the neutron [505]11/2- Nilsson orbital has been observed and is reported for the first time in this work. Additional new states in 163Yb were observed which all decay to the yrast band. Some of these states are placed in a sequence which is conjectured to be a \( \gamma\) band involving a coupling with the i13/2[642]5/2+ neutron orbital. The band structures are discussed with reference to Cranked Shell Model (CSM) calculations and a systematic comparison with the neighbouring nuclei.

References

  1. 1.
    P.E. Garrett, J. Phys. G 27, R1 (2001)ADSCrossRefGoogle Scholar
  2. 2.
    P.E. Garrett, J.L. Wood, S.W. Yates, Phys. Scr. 83, 0633001 (2018)Google Scholar
  3. 3.
    J.F. Sharpey-Schafer et al., Eur. Phys. J. A 47, 5 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    J.F. Sharpey-Schafer et al., Eur. Phys. J. A 47, 6 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    J.F. Sharpey-Schafer et al., Eur. Phys. J. A 55, 15 (2019)ADSCrossRefGoogle Scholar
  6. 6.
    J.L. Wood et al., Phys. Rev. C 70, 024308 (2004)ADSCrossRefGoogle Scholar
  7. 7.
    J.M. Allmond et al., Phys. Rev. C 78, 014302 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    E. Grosse et al., Phys. Scr. 92, 114003 (2017)ADSCrossRefGoogle Scholar
  9. 9.
    E. Grosse et al., Phys. Scr. 94, 014008 (2019)ADSCrossRefGoogle Scholar
  10. 10.
    J. Kownacki et al., Nucl. Phys. A 394, 269 (1983)ADSCrossRefGoogle Scholar
  11. 11.
    G.B. Hagemann et al., Nucl. Phys. A 618, 199 (1997)ADSCrossRefGoogle Scholar
  12. 12.
    J. Simpson et al., Eur. Phys. J. A 1, 267 (1998)ADSCrossRefGoogle Scholar
  13. 13.
    G. Schonwasser et al., Eur. Phys. J. A 13, 291 (2002)ADSCrossRefGoogle Scholar
  14. 14.
    L. Richter, Z. Phys. A 290, 213 (1979)ADSCrossRefGoogle Scholar
  15. 15.
    J.F. Sharpey-Schafer, Nucl. Phys. News Int. 14, 5 (2004)CrossRefGoogle Scholar
  16. 16.
    J.L. Conradie, in Cyclotrons and Their Applications, Proceedings, 18th International Conference, Catania, October 2007, p. 140Google Scholar
  17. 17.
    K.S. Krane, Introductory Nuclear Physics (John Wiley & Sons, 1988)Google Scholar
  18. 18.
    A. Gavron, Phys. Rev. C 21, 230 (1980)ADSCrossRefGoogle Scholar
  19. 19.
    P.J. Twin, Nucl. Instrum. Methods 106, 481 (1973)ADSCrossRefGoogle Scholar
  20. 20.
    R. Bengstsson, S. Frauendorf, Nucl. Phys. A 327, 139 (1979)ADSCrossRefGoogle Scholar
  21. 21.
    R. Bengstsson et al., At. Data Nucl. Data Tables 35, 15 (1986)ADSCrossRefGoogle Scholar
  22. 22.
    L. Chen et al., Phys. Rev. C 83, 034318 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    M. Sugawara et al., Nucl. Phys. A 699, 450 (2002)ADSCrossRefGoogle Scholar
  24. 24.
    L.L. Riedinger et al., Nucl. Phys. A 347, 141 (1980)ADSCrossRefGoogle Scholar
  25. 25.
    J.D. Garrett et al., Phys. Rev. Lett. 47, 75 (1981)ADSCrossRefGoogle Scholar
  26. 26.
    J.D. Garrett et al., Phys. Lett. B 118, 297 (1982)ADSCrossRefGoogle Scholar
  27. 27.
    S.J. Gale et al., J. Phys. G 21, 193 (1995)ADSGoogle Scholar
  28. 28.
    M. Mustafa et al., Phys. Rev. C 84, 054320 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    G. Gervais et al., Nucl. Phys. A 624, 257 (1997)ADSCrossRefGoogle Scholar
  30. 30.
    E.M. Beck et al., Nucl. Phys. A 464, 472 (1987)ADSCrossRefGoogle Scholar
  31. 31.
    D.E. Archer et al., Phys. Rev. C 57, 2924 (1998)ADSCrossRefGoogle Scholar
  32. 32.
    A. Fitzpatrick et al., Nucl. Phys. A 582, 335 (1995)ADSCrossRefGoogle Scholar
  33. 33.
    N. Roy et al., Nucl. Phys. A 382, 125 (1982)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • M. A. Sithole
    • 1
    • 2
    Email author
  • J. F. Sharpey Schafer
    • 1
  • S. N. T. Majola
    • 2
    • 3
    • 4
  • T. D. Bucher
    • 2
    • 5
  • T. R. S. Dinoko
    • 2
    • 6
  • S. S. Ntshangase
    • 3
  • E. A. Lawrie
    • 2
    • 1
  • N. A. Khumalo
    • 1
  • S. Jongile
    • 2
    • 3
    • 5
  • L. Mdletshe
    • 2
    • 3
  • R. A. Bark
    • 2
  • N. Erasmus
    • 1
    • 2
  • P. Jones
    • 2
  • B. V. Kheswa
    • 2
    • 4
  • J. J. Lawrie
    • 2
  • L. Makhathini
    • 2
    • 5
  • K. L. Malatji
    • 2
    • 5
  • B. Maqabuka
    • 1
    • 2
  • S. P. Noncolela
    • 1
    • 2
  • J. Ndayishimye
    • 2
  • O. Shirinda
    • 2
    • 5
  • B. R. Zikhali
    • 1
    • 2
    • 3
  • P. L. Masiteng
    • 4
  1. 1.University of the Western Cape, Department of PhysicsBellvilleSouth Africa
  2. 2.iThemba Laboratory for Accelerator Based SciencesNational Research FoundationSomerset-WestSouth Africa
  3. 3.University of Zululand, Department of PhysicsKwaDlangezwaSouth Africa
  4. 4.University of Johannesburg, Department of PhysicsAuckland ParkSouth Africa
  5. 5.University of Stellenbosch, Department of PhysicsMatielandSouth Africa
  6. 6.RF Section, NMISAPretoriaSouth Africa

Personalised recommendations