Advertisement

Soft giant resonance in two neutron halo nucleus 11Li

  • Isao TanihataEmail author
  • Kazuyuki Ogata
Review
  • 24 Downloads
Part of the following topical collections:
  1. Giant, Pygmy, Pairing Resonances and Related Topics

Abstract.

Lithium-11 is a showcase of neutron halos and has been providing new insight to nuclear structure researches. Recently, an isoscalar resonance at low excitation energy (\( E_\mathrm{x} \sim 1\) MeV) has been confirmed by the development of a low-energy high-intensity beam of 11Li at TRIUMF. By inelastic scattering measurements \( (\mathrm{p}, \mathrm{p}^{\prime})\) and \( (\mathrm{d}, \mathrm{d}^{\prime})\) with inverse kinematics, the first excited state of 11Li has been studied in detail and an isoscalar nature of the transitions has been confirmed and a strong transition amplitude has been observed indicating the soft-resonance of 11Li. Those recent experimental results on the excitation of the soft resonance are described and then recent theoretical developments based on the four-body continuum-discretized coupled-channels 11Li + p system are presented together with a brief history of the resonance search in 11Li.

References

  1. 1.
    I. Tanihata et al., Phys. Rev. Lett. 55, 2676 (1985)ADSCrossRefGoogle Scholar
  2. 2.
    P.G. Hansen, B. Jonson, Europhys. Lett. 4, 409 (1987)ADSCrossRefGoogle Scholar
  3. 3.
    K. Ikeda, Nucl. Phys. A 538, 355c (1992)ADSCrossRefGoogle Scholar
  4. 4.
    Y. Suzuki, Y. Tosaka, Nucl. Phys. A 517, 599 (1990)ADSCrossRefGoogle Scholar
  5. 5.
    T. Kobayashi et al., Phys. Rev. Lett. 60, 2599 (1988)ADSCrossRefGoogle Scholar
  6. 6.
    C.A. Bertulani, G. Baur, Phys. Rep. 163, 299 (1988)ADSCrossRefGoogle Scholar
  7. 7.
    T. Kobayashi, Nucl. Phys. A 538, 343c (1992)ADSCrossRefGoogle Scholar
  8. 8.
    H.G. Bohlen et al., Z. Phys. A 351, 7 (1995)ADSCrossRefGoogle Scholar
  9. 9.
    M.G. Gornov et al., Phys. Rev. Lett. 81, 4325 (1998)ADSCrossRefGoogle Scholar
  10. 10.
    A.A. Korsheninnikov et al., Phys. Rev. C 53, R537 (1996)ADSCrossRefGoogle Scholar
  11. 11.
    A.A. Korsheninnikov et al., Phys. Rev. Lett. 12, 2317 (1997)ADSCrossRefGoogle Scholar
  12. 12.
    D.R. Tilley et al., Nucl. Phys. A 745, 155 (2004) revised, available fromADSCrossRefGoogle Scholar
  13. 13.
    M. Zinser et al., Nucl. Phys. A 619, 151 (1997)ADSCrossRefGoogle Scholar
  14. 14.
    K. Ieki et al., Phys. Rev. Lett. 70, 730 (1993)ADSCrossRefGoogle Scholar
  15. 15.
    S. Shimoura et al., Phys. Lett. B 348, 29 (1995)ADSCrossRefGoogle Scholar
  16. 16.
    T. Nakamura et al., Phys. Rev. Lett. 96, 252502 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    C. Thibault et al., Phys. Rev. C 12, 644 (1975)ADSCrossRefGoogle Scholar
  18. 18.
    J.M. Wouters et al., Z. Phys. A 331, 229 (1988)ADSGoogle Scholar
  19. 19.
    T. Kobayahi et al., KEK Preprint 91, 22 (1991)Google Scholar
  20. 20.
    B.M. Young et al., Phys. Rev. Lett. 71, 4124 (1993)ADSCrossRefGoogle Scholar
  21. 21.
    C. Bachelet et al., Eur. Phys. J. A 25, 31 (2005)CrossRefGoogle Scholar
  22. 22.
    M. Smith et al., Phys. Rev. Lett. 101, 202501 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    T. Roger et al., Phys. Rev. C 79, 031603 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    R. Kanungo et al., Phys. Rev. Lett. 114, 192502 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    J. Tanaka et al., Phys. Lett. B 774, 268 (2017)ADSCrossRefGoogle Scholar
  26. 26.
    J. Tanaka, PhD Dissertation, Osaka University, Japan (September 2016)Google Scholar
  27. 27.
    I.J. Thompson, Comput. Phys. Rep. 7, 167 (1988)ADSCrossRefGoogle Scholar
  28. 28.
    P.D. Kunz, A coupled-Channel code CHUCK3, University of Colorado, unpublished, modified by J.R. Comfort and M.N. HarakehGoogle Scholar
  29. 29.
    A. Bohr, B.R. Mottelson, Nuclear Structure II (World Scientific Publishing Co., 1975)Google Scholar
  30. 30.
    G.R. Satchler, Nucl. Phys. A 472, 215 (1987)ADSCrossRefGoogle Scholar
  31. 31.
    M.N. Harakeh, A.E.L. Dieperink, Phys. Rev. C 23, 2329 (1981)ADSCrossRefGoogle Scholar
  32. 32.
    G. Orlandini et al., Phys. Lett. B 119, 21 (1982)ADSCrossRefGoogle Scholar
  33. 33.
    A. Ekstrom et al., Phys. Rev. Lett. 110, 192502 (2013) (calculations under the assumption that ADSCrossRefGoogle Scholar
  34. 34.
    A. Ekstrom et al., Phys. Rev. Lett. 110, 192502 (2013) (calculations under the assumption that ADSCrossRefGoogle Scholar
  35. 35.
    T. Myo et al., Phys. Rev. C 86, 024318 (2012)ADSCrossRefGoogle Scholar
  36. 36.
    F. Barranco et al., Eur. Phys. J. A 11, 385 (2001)ADSCrossRefGoogle Scholar
  37. 37.
    T. Matsumoto, J. Tanaka, K. Ogata, Prog. Theor. Exp. Phys. (in press) arXiv:1711.07209 (2017)Google Scholar
  38. 38.
    J.-P. Jeukenne, A. Lejeune, C. Mahaux, Phys. Rev. C 16, 80 (1977)ADSCrossRefGoogle Scholar
  39. 39.
    J. Aguilar, J.M. Combes, Commun. Math. Phys. 22, 269 (1971)ADSCrossRefGoogle Scholar
  40. 40.
    E. Balslev, J.M. Combes, Commun. Math. Phys. 22, 280 (1971)ADSCrossRefGoogle Scholar
  41. 41.
    H. Feshbach, Ann. Phys. (N.Y.) 5, 357 (1958)ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    H. Feshbach, Ann. Phys. (N.Y.) 19, 287 (1962)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.IRCNPC and School of PhysicsBeihang UniversityBeijingChina
  2. 2.RCNPOsaka UniversityOsakaJapan

Personalised recommendations