Advertisement

Rescattering effects in antiproton-induced exclusive J/\( \psi\) and \( \psi^{{\prime}}_{}\) production on the deuteron

  • A. B. LarionovEmail author
  • A. Gillitzer
  • M. Strikman
Regular Article - Theoretical Physics
  • 11 Downloads

Abstract.

On the basis of the generalized eikonal approximation we study the exclusive reactions \( \bar{p}d\rightarrow J/\psi n\) and \( \bar{p}d\rightarrow \psi^{\prime} n\) in the vicinity of the thresholds for charmonium production on a free proton target. It is shown that the rescattering of the incoming antiproton and outgoing charmonium on the spectator neutron leads to a depletion of the charmonium production at low- and to an enhancement at high-transverse momenta. This is in qualitative agreement with previous studies of hard proton knockout in proton-deuteron collisions. We analyze different physical sources of uncertainty which may influence the extraction of the total charmonium-neutron cross section. The color transparency effect for the incoming \( \bar{{p}}\) largely compensates the influence of charmonium rescattering both at low and high transverse momenta. Different choices of the deuteron wave function lead to significant uncertainties at high transverse momenta. As an outcome of the calculations of charmonium production, we also provide predictions on the production of open charm hadrons due to the dissociation of the charmonium on the neutron. It is shown that the open charm production cross section is proportional to the total charmonium-nucleon cross section and quite stable with respect to the variation of other parameters of the model. We thus suggest that open charm channels are most suited for future studies of charmonium-nucleon interactions at PANDA with a deuteron target.

References

  1. 1.
    L. Gerland, L. Frankfurt, M. Strikman, H. Stöcker, W. Greiner, Phys. Rev. Lett. 81, 762 (1998) arXiv:nucl-th/9803034 [nucl-th]ADSCrossRefGoogle Scholar
  2. 2.
    J. Hüfner, Yu.P. Ivanov, B.Z. Kopeliovich, A.V. Tarasov, Phys. Rev. D 62, 094022 (2000) arXiv:0007111 [hep-ph]ADSCrossRefGoogle Scholar
  3. 3.
    T. Matsui, H. Satz, Phys. Lett. B 178, 416 (1986)ADSCrossRefGoogle Scholar
  4. 4.
    R. Vogt, Phys. Rep. 310, 197 (1999)ADSCrossRefGoogle Scholar
  5. 5.
    R.L. Anderson et al., Phys. Rev. Lett. 38, 263 (1977)ADSCrossRefGoogle Scholar
  6. 6.
    C. Gerschel, J. Hüfner, Z. Phys. C 56, 171 (1992)ADSCrossRefGoogle Scholar
  7. 7.
    D. Kharzeev, C. Lourenco, M. Nardi, H. Satz, Z. Phys. C 74, 307 (1997) arXiv:hep-ph/9612217 [hep-ph]CrossRefGoogle Scholar
  8. 8.
    NA38 Collaboration (M.C. Abreu et al.), Phys. Lett. B 449, 128 (1999)ADSCrossRefGoogle Scholar
  9. 9.
    L. Gerland, L. Frankfurt, M. Strikman, Phys. Lett. B 619, 95 (2005) arXiv:nucl-th/0501074 [nucl-th]ADSCrossRefGoogle Scholar
  10. 10.
    S.J. Brodsky, A.H. Mueller, Phys. Lett. B 206, 685 (1988)ADSCrossRefGoogle Scholar
  11. 11.
    G.R. Farrar, L.L. Frankfurt, M.I. Strikman, H. Liu, Nucl. Phys. B 345, 125 (1990)ADSCrossRefGoogle Scholar
  12. 12.
    A.B. Larionov, M. Bleicher, A. Gillitzer, M. Strikman, Phys. Rev. C 87, 054608 (2013) arXiv:1303.0236 [nucl-th]ADSCrossRefGoogle Scholar
  13. 13.
    L. Frankfurt, L. Gerland, M. Strikman, M. Zhalov, Phys. Rev. C 68, 044602 (2003)ADSCrossRefGoogle Scholar
  14. 14.
    T. Sugiura, Y. Ikeda, N. Ishii, EPJ Web of Conferences 175, 05011 (2018) arXiv:1711.11219 [hep-lat]CrossRefGoogle Scholar
  15. 15.
    A. Sibirtsev, K. Tsushima, A.W. Thomas, Phys. Rev. C 63, 044906 (2001) arXiv:nucl-th/0005041 [nucl-th]ADSCrossRefGoogle Scholar
  16. 16.
    Y. Oh, W. Liu, C. Ko, Phys. Rev. C 75, 064903 (2007) arXiv:nucl-th/0702077 [nucl-th]ADSCrossRefGoogle Scholar
  17. 17.
    R. Molina, C. Xiao, E. Oset, Phys. Rev. C 86, 014604 (2012) arXiv:1203.0979 [nucl-th]ADSCrossRefGoogle Scholar
  18. 18.
    C.W. Xiao, U.G. Meißner, Phys. Rev. D 92, 114002 (2015) arXiv:1508.00924 [hep-ph]ADSCrossRefGoogle Scholar
  19. 19.
    W. Cassing, Ye.S. Golubeva, L.A. Kondratyuk, Eur. Phys. J. A 7, 279 (2000) arXiv:nucl-th/9911026 [nucl-th]ADSGoogle Scholar
  20. 20.
    J. Haidenbauer, G. Krein, U.G. Meißner, A. Sibirtsev, Eur. Phys. J. A 37, 55 (2008) arXiv:0803.3752 [hep-ph]ADSCrossRefGoogle Scholar
  21. 21.
    L.L. Frankfurt, W.R. Greenberg, G.A. Miller, M.M. Sargsian, M.I. Strikman, Z. Phys. A 352, 97 (1995) arXiv:nucl-th/9501009 [nucl-th]ADSCrossRefGoogle Scholar
  22. 22.
    L.L. Frankfurt, E. Piasetzky, M.M. Sargsian, M.I. Strikman, Phys. Rev. C 56, 2752 (1997) arXiv:hep-ph/9607395 [hep-ph]ADSCrossRefGoogle Scholar
  23. 23.
    L.L. Frankfurt, M.M. Sargsian, M.I. Strikman, Phys. Rev. C 56, 1124 (1997) arXiv:nucl-th/9603018 [nucl-th]ADSCrossRefGoogle Scholar
  24. 24.
    M.M. Sargsian, Int. J. Mod. Phys. E 10, 405 (2001) arXiv:nucl-th/0110053 [nucl-th]ADSCrossRefGoogle Scholar
  25. 25.
    A.B. Larionov, M. Strikman, M. Bleicher, Phys. Rev. C 89, 014621 (2014) arXiv:1312.2150 [nucl-th]ADSCrossRefGoogle Scholar
  26. 26.
    A.B. Larionov, A. Gillitzer, J. Haidenbauer, M. Strikman, Phys. Rev. C 98, 054611 (2018) arXiv:1807.05105 [nucl-th]ADSCrossRefGoogle Scholar
  27. 27.
    M. Lacombe, B. Loiseau, R. Vinh Mau, J. Cote, P. Pires, R. de Tourreil, Phys. Lett. B 101, 139 (1981)ADSCrossRefGoogle Scholar
  28. 28.
    T. Barnes, X. Li, W. Roberts, Phys. Rev. D 77, 056001 (2008) arXiv:0709.4491 [hep-ph]ADSCrossRefGoogle Scholar
  29. 29.
    BESIII Collaboration (M. Ablikim et al.), Phys. Rev. D 86, 032014 (2012) arXiv:1205.1036 [hep-ex]CrossRefGoogle Scholar
  30. 30.
    Particle Data Group (M. Tanabashi et al.), Phys. Rev. D 98, 030001 (2018)Google Scholar
  31. 31.
    BESIII Collaboration (M. Ablikim et al.), Phys. Rev. D 98, 032006 (2018) arXiv:1803.02039 [hep-ex]ADSCrossRefGoogle Scholar
  32. 32.
    M.G. Olsson, C.J. Suchyta III, Phys. Rev. D 34, 2043 (1986)ADSCrossRefGoogle Scholar
  33. 33.
    F.L. Ridener, K.J. Sebastian, Phys. Rev. D 49, 5830 (1994)ADSCrossRefGoogle Scholar
  34. 34.
    A.B. Larionov, H. Lenske, Nucl. Phys. A 957, 450 (2017) arXiv:1609.03343 [nucl-th]ADSCrossRefGoogle Scholar
  35. 35.
    G. Farrar, H. Liu, L. Frankfurt, M. Strikman, Phys. Rev. Lett. 61, 686 (1988)ADSCrossRefGoogle Scholar
  36. 36.
    M. Lacombe, B. Loiseau, J. Richard, R. Vinh Mau, J. Cote et al., Phys. Rev. C 21, 861 (1980)ADSCrossRefGoogle Scholar
  37. 37.
    R. Machleidt, K. Holinde, C. Elster, Phys. Rep. 149, 1 (1987)ADSCrossRefGoogle Scholar
  38. 38.
    J. Haidenbauer, K. Holinde, M.B. Johnson, Phys. Rev. C 48, 2190 (1993)ADSCrossRefGoogle Scholar
  39. 39.
    R.B. Wiringa, V.G.J. Stoks, R. Schiavilla, Phys. Rev. C 51, 38 (1995) arXiv:nucl-th/9408016 [nucl-th]ADSCrossRefGoogle Scholar
  40. 40.
    V.G.J. Stoks, R.A.M. Klomp, C.P.F. Terheggen, J.J. de Swart, Phys. Rev. C 49, 2950 (1994) arXiv:nucl-th/9406039 [nucl-th]ADSCrossRefGoogle Scholar
  41. 41.
    R. Machleidt, Phys. Rev. C 63, 024001 (2001) arXiv:nucl-th/0006014 [nucl-th]ADSCrossRefGoogle Scholar
  42. 42.
    R.A. Gilman, F. Gross, J. Phys. G 28, R37 (2002) arXiv:nucl-th/0111015 [nucl-th]ADSCrossRefGoogle Scholar
  43. 43.
    The PANDA Collaboration, M.F.M. Lutz, B. Pire, O. Scholten, R. Timmermans, arXiv:0903.3905 (2009)Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institut für Kernphysik, Forschungszentrum JülichJülichGermany
  2. 2.National Research Center “Kurchatov Institute”MoscowRussia
  3. 3.Frankfurt Institute for Advanced Studies (FIAS)Frankfurt am MainGermany
  4. 4.Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations