Advertisement

Production of \( \phi\)(2170) and \( \eta\)(2225) in a kaon induced reaction

  • Xiao-Yun Wang
  • Jun HeEmail author
Regular Article - Theoretical Physics
  • 21 Downloads

Abstract.

In this work, we study the production of strange quarkoniums, the \( \phi(2170)\) , also named \( Y(2175)\) , and the \( \eta\)(2225) , via a kaon induced reaction on a proton target in an effective Lagrangian approach. The total and differential cross sections of the reactions \( K^{-}p\rightarrow\phi (2170)\Lambda\) and \( K^{-}p\rightarrow \eta (2225)\Lambda\) are calculated by the Reggeized t -channel Born term under an assumption that the \( \phi(2170)\) and \( \eta(2225)\) are \( \Lambda\bar{\Lambda}\) molecular states. At the center of mass energies of about 4.2GeV, the total cross section for the \( \phi(2170)\) production is predicted to be about 1μb. The numerical results indicate that it is feasible to produce the \( \phi(2170)\) via kaon beam scattering at the best energy window near 4.2GeV. The total cross section for the \( \eta(2225)\) production is smaller than that for the \( \phi(2170)\) production and it may reach an order of the magnitude of 0.1μb. The differential cross sections for both reactions at different center of mass energies are also presented. It is found that the Reggeized t channel gives a considerable contribution at forward angles. As the energy increases, the contribution from the t -channel almost concentrates at extreme forward angles. From these theoretical predictions, the relevant experimental research is suggested, which could provide important information to clarify the internal structure and production mechanism of these two strange quarkoniums.

References

  1. 1.
    G.D. Rochester, C.C. Butler, Nature 160, 855 (1947)ADSCrossRefGoogle Scholar
  2. 2.
    Particle Data Group (M. Tanabashi et al.), Phys. Rev. D 98, 030001 (2018)Google Scholar
  3. 3.
    BESIII Collaboration (M. Ablikim et al.), Phys. Rev. D 93, 112011 (2016)ADSCrossRefGoogle Scholar
  4. 4.
    G.J. Ding, M.L. Yan, Phys. Lett. B 657, 49 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    X. Wang, Z.F. Sun, D.Y. Chen, X. Liu, T. Matsuki, Phys. Rev. D 85, 074024 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    S.S. Afonin, I.V. Pusenkov, Phys. Rev. D 90, 094020 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    D.M. Li, B. Ma, Phys. Rev. D 77, 094021 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    D.M. Li, S. Zhou, Phys. Rev. D 78, 054013 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    C. Deng, J. Ping, Y. Yang, F. Wang, Phys. Rev. D 88, 074007 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    L. Zhao, N. Li, S.L. Zhu, B.S. Zou, Phys. Rev. D 87, 054034 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    Y. Dong, A. Faessler, T. Gutsche, Q. Lü, V.E. Lyubovitskij, Phys. Rev. D 96, 074027 (2017)ADSCrossRefGoogle Scholar
  12. 12.
    Z.G. Wang, Nucl. Phys. A 791, 106 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    H.X. Chen, X. Liu, A. Hosaka, S.L. Zhu, Phys. Rev. D 78, 034012 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    N.V. Drenska, R. Faccini, A.D. Polosa, Phys. Lett. B 669, 160 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    G.J. Ding, M.L. Yan, Phys. Lett. B 650, 390 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    A. Martinez Torres, K.P. Khemchandani, L.S. Geng, M. Napsuciale, E. Oset, Phys. Rev. D 78, 074031 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    S. Gomez-Avila, M. Napsuciale, E. Oset, Phys. Rev. D 79, 034018 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    T. Nagae, Nucl. Phys. A 805, 486 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    GlueX Collaboration (S. Adhikari), arXiv:1707.05284 [hep-ex]Google Scholar
  20. 20.
    NA62-RK and NA48/2 Collaborations (B. Velghe), Nucl. Part. Phys. Proc. 273-275, 2720 (2016)CrossRefGoogle Scholar
  21. 21.
    OKA Collaboration (V. Obraztsov), Nucl. Part. Phys. Proc. 273-275, 1330 (2016)CrossRefGoogle Scholar
  22. 22.
    X.Y. Wang, J. He, Phys. Rev. D 96, 034017 (2017)ADSCrossRefGoogle Scholar
  23. 23.
    X.Y. Wang, J. He, Phys. Rev. C 93, 035202 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    H.Y. Ryu, A.I. Titov, A. Hosaka, H.C. Kim, Prog. Theor. Exp. Phys. 2014, 023D03 (2014)CrossRefGoogle Scholar
  25. 25.
    X.H. Liu, Q. Zhao, F.E. Close, Phys. Rev. D 77, 094005 (2008)ADSCrossRefGoogle Scholar
  26. 26.
    Y. Oh, H. Kim, Phys. Rev. C 73, 065202 (2006)ADSCrossRefGoogle Scholar
  27. 27.
    Y. Oh, H. Kim, Phys. Rev. C 74, 015208 (2006)ADSCrossRefGoogle Scholar
  28. 28.
    V.G.J. Stoks, T.A. Rijken, Phys. Rev. C 59, 3009 (1999)ADSCrossRefGoogle Scholar
  29. 29.
    X.Y. Wang, X.R. Chen, Eur. Phys. J. A 51, 85 (2015)ADSCrossRefGoogle Scholar
  30. 30.
    H. Haberzettl, X.Y. Wang, J. He, Phys. Rev. C 92, 055503 (2015)ADSCrossRefGoogle Scholar
  31. 31.
    X.Y. Wang, J. He, H. Haberzettl, Phys. Rev. C 93, 045204 (2016)ADSCrossRefGoogle Scholar
  32. 32.
    S. Ozaki, H. Nagahiro, A. Hosaka, Phys. Rev. C 81, 035206 (2010)ADSCrossRefGoogle Scholar
  33. 33.
    X.Y. Wang, J. He, Phys. Rev. D 95, 094005 (2017)ADSCrossRefGoogle Scholar
  34. 34.
    X.Y. Wang, J. He, Q. Wang, H. Xu, Phys. Rev. D 99, 014020 (2019)ADSCrossRefGoogle Scholar
  35. 35.
    GlueX Collaboration (A. Austregesilo), Int. J. Mod. Phys. Conf. Ser. 46, 1860029 (2018)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of physicsLanzhou University of TechnologyLanzhouChina
  2. 2.Department of Physics and Institute of Theoretical PhysicsNanjing Normal UniversityNanjing, JiangsuChina

Personalised recommendations