Advertisement

The decay \(J/ \psi\rightarrow\gamma\phi\phi\): Spin dependence of amplitude and angular distributions of photons with linear polarizations

  • A. A. KozhevnikovEmail author
Regular Article - Theoretical Physics

Abstract.

Based on the effective invariant amplitudes of the transitions \( J/\psi\rightarrow\gamma X(J^{P})\) and \( X(J^{P}) \rightarrow\phi\phi\), the spin dependence of the \( J/\psi \rightarrow\gamma X(J^{P})\rightarrow\gamma\phi\phi\) decay amplitude is obtained in the case of the intermediate resonances X with \( J^{P} = 0^{\pm} ,1^{\pm}, 2^{\pm}\). Angular distributions of photons with the definite linear polarizations relative to the plane spanned by the momentum of initial electron and the total momentum of the \( \phi\phi\) pair in the reaction \( e^{+}e^{-}\rightarrow J/\psi\rightarrow\gamma X(J^{P})\rightarrow \gamma\phi\phi\) are calculated. It is shown that the sign of the asymmetry of the distributions of the photons polarized in the above plane and orthogonal to it correlates with the signature \( P_{X}(-1)^{J_{X}}\) of the X resonance with given spin-parity \( J_{X}^{P_{X}}\) so it may help to establish this quantum number in a way which does not depend on the specific model of the \( X(J^{P}) \rightarrow\phi\phi\) amplitude.

References

  1. 1.
    D. Bisello et al., Phys. Lett. B 179, 294 (1986)ADSCrossRefGoogle Scholar
  2. 2.
    Z. Bai et al., Phys. Rev. Lett. 65, 1309 (1990)ADSCrossRefGoogle Scholar
  3. 3.
    M. Ablikim et al., Phys. Lett. B 662, 330 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    BESIII Collaboration (M. Ablikim et al.), Phys. Rev. D 93, 112011 (2016)ADSCrossRefGoogle Scholar
  5. 5.
    S.J. Lindenbaum, R.S. Longacre, Phys. Lett. B 165, 202 (1985)ADSCrossRefGoogle Scholar
  6. 6.
    A. Etkin et al., Phys. Lett. B 165, 217 (1985)ADSCrossRefGoogle Scholar
  7. 7.
    P.S.L. Booth et al., Nucl. Phys. B 273, 677 (1986)ADSCrossRefGoogle Scholar
  8. 8.
    A. Etkin et al., Phys. Lett. B 201, 568 (1988)ADSCrossRefGoogle Scholar
  9. 9.
    Particle Data Group (M. Tanabashi et al.), Phys. Rev. D 98, 030001 (2018)Google Scholar
  10. 10.
    L.D. Landau, Doklady Akademii Nauk SSSR 60, 207 (1948)Google Scholar
  11. 11.
    C.N. Yang, Phys. Rev. 77, 242 (1950)ADSCrossRefGoogle Scholar
  12. 12.
    K. Abe et al., Eur. Phys. J. C 32, 323 (2004)Google Scholar
  13. 13.
    S. Uehara et al., Prog. Theor. Exp. Phys. 2013, 123C01 (2013)CrossRefGoogle Scholar
  14. 14.
    N.-P. Chang, C.A. Nelson, Phys. Rev. D 20, 2923 (1979)ADSCrossRefGoogle Scholar
  15. 15.
    N.-P. Chang, C.A. Nelson, Phys. Rev. Lett. 40, 1617 (1978)ADSCrossRefGoogle Scholar
  16. 16.
    T.L. Trueman, Phys. Rev. D 18, 3423 (1978)ADSCrossRefGoogle Scholar
  17. 17.
    C.N. Yang, Phys. Rev. 77, 722 (1950)ADSCrossRefGoogle Scholar
  18. 18.
    B.S. Zou, D.V. Bugg, Eur. Phys. J. A 16, 537 (2003)ADSCrossRefGoogle Scholar
  19. 19.
    A.A. Kozhevnikov, Phys. Rev. D 99, 014019 (2019)ADSCrossRefGoogle Scholar
  20. 20.
    W.H. Liang, H.X. Chen, E. Oset, E. Wang, Eur. Phys. J. C 79, 411 (2019)ADSCrossRefGoogle Scholar
  21. 21.
    T.H. Berlin, L. Madansky, Phys. Rev. 78, 623 (1950)ADSCrossRefGoogle Scholar
  22. 22.
    G.C. Wick, Phys. Rev. 81, 467 (1951)ADSCrossRefGoogle Scholar
  23. 23.
    H. Olsen, L.C. Maximon, Phys. Rev. 114, 887 (1959)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    L.C. Maximon, H. Olsen, Phys. Rev. 126, 310 (1962)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratory of Theoretical PhysicsS. L. Sobolev Institute for MathematicsNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations