Spurious finite-size instabilities with Gogny-type interactions

  • M. Martini
  • A. De Pace
  • K. BennaceurEmail author
Open Access


Recently, a new parameterization of the Gogny interaction suitable for astrophysical applications, named D1M*, has been presented. We investigate the possible existence of spurious finite-size instabilities of this new Gogny force by repeating a study that we have already performed for the most commonly used parameterizations (D1, D1S, D1N, D1M) of the Gogny force. This study is based on a fully antisymmetrized random phase approximation (RPA) calculation of the nuclear matter response functions employing the continued fraction technique. It turns out that this new Gogny interaction is affected by spurious finite-size instabilities in the scalar isovector channel; hence, unphysical results are expected in the calculation of properties of nuclei, like neutron and proton densities, if this D1M* force is used. The conclusions from this study are then, for the first time, tested against mean-field calculations in a coordinate representation for several nuclei. Unphysical results for several nuclei are also obtained with the D1N parameterization of the Gogny force. These observations strongly advocate for the use of the linear response formalism to detect and avoid finite-size instabilities during the fit of the parameters of Gogny interactions as it is already done for some Skyrme forces.


  1. 1.
    C. Gonzalez-Boquera, M. Centelles, X. Viñas, L. Robledo, Phys. Lett. B 779, 195 (2018)ADSCrossRefGoogle Scholar
  2. 2.
    R. Sellahewa, A. Rios, Phys. Rev. C 90, 054327 (2014)ADSCrossRefGoogle Scholar
  3. 3.
    C. Gonzalez-Boquera, M. Centelles, X. Viñas, A. Rios, Phys. Rev. C 96, 065806 (2017)ADSCrossRefGoogle Scholar
  4. 4.
    J. Berger, M. Girod, D. Gogny, Comput. Phys. Commun. 63, 365 (1991)ADSCrossRefGoogle Scholar
  5. 5.
    F. Chappert, M. Girod, S. Hilaire, Phys. Lett. B 668, 420 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    S. Goriely, S. Hilaire, M. Girod, S. Péru, Phys. Rev. Lett. 102, 242501 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    P.B. Demorest, T. Pennucci, S.M. Ransom, M.S.E. Roberts, J.W.T. Hessels, Nature 467, 1081 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    J. Antoniadis, P.C.C. Freire, N. Wex, T.M. Tauris, R.S. Lynch, M.H. van Kerkwijk, M. Kramer, C. Bassa, V.S. Dhillon, T. Driebe et al., Science 340, 448 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    G. Audi, M. Wang, A. Wapstra, F. Kondev, M. MacCormick, X. Xu, B. Pfeiffer, Chin. Phys. C 36, 1287 (2012)CrossRefGoogle Scholar
  10. 10.
    L. Robledo, HFBaxial computer code, unpublished (2002)Google Scholar
  11. 11.
    V. Hellemans, A. Pastore, T. Duguet, K. Bennaceur, D. Davesne, J. Meyer, M. Bender, P.H. Heenen, Phys. Rev. C 88, 064323 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    A. De Pace, M. Martini, Phys. Rev. C 94, 024342 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    D. Gogny, in Proceedings of the International Conference on Nuclear Physics, Munich, edited by J. De Boer, H.J. Mang, Vol. 1 (North Holland, 1973) p. 48Google Scholar
  14. 14.
    K. Bennaceur, J. Dobaczewski, Comput. Phys. Commun. 168, 96 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    W. Ryssens, V. Hellemans, M. Bender, P.H. Heenen, Comput. Phys. Commun. 187, 175 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    K. Bennaceur, FINRES$_4$ computer code, unpublishedGoogle Scholar
  17. 17.
    R. Hooverman, Nucl. Phys. A 189, 155 (1972)ADSCrossRefGoogle Scholar
  18. 18.
    R.N. Perez, N. Schunck, R.D. Lasseri, C. Zhang, J. Sarich, Comput. Phys. Commun. 220, 363 (2017)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    M. Kortelainen, J. McDonnell, W. Nazarewicz, E. Olsen, P.G. Reinhard, J. Sarich, N. Schunck, S.M. Wild, D. Davesne, J. Erler et al., Phys. Rev. C 89, 054314 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    A. Pastore, D. Davesne, K. Bennaceur, J. Meyer, V. Hellemans, Phys. Scr. 2013, 014014 (2013)CrossRefGoogle Scholar
  21. 21.
    R. Jodon, M. Bender, K. Bennaceur, J. Meyer, Phys. Rev. C 94, 024335 (2016)ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  1. 1.DRII-IPSAIvry-sur-SeineFrance
  2. 2.Istituto Nazionale di Fisica Nucleare, Sezione di TorinoTorinoItaly
  3. 3.Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IPNLVilleurbanne CedexFrance

Personalised recommendations