Advertisement

Iterative approaches to the self-consistent nuclear energy density functional problem

Heavy ball dynamics and potential preconditioning
  • W. RyssensEmail author
  • M. Bender
  • P. -H. Heenen
Regular Article - Theoretical Physics

Abstract.

Large-scale applications of energy density functional (EDF) methods depend on fast and reliable algorithms to solve the associated non-linear self-consistency problem. When dealing with large single-particle variational spaces, existing solvers can become very slow, and their performance dependent on manual fine-tuning of numerical parameters. In addition, convergence can sensitively depend on particularities of the EDF’s parametrisation under consideration. Using the widely-used Skyrme EDF as an example, we investigate the impact of the parametrisation of the EDF, both in terms of the operator structures present and the size of coupling constants, on the convergence of numerical solvers. We focus on two aspects of the self-consistency cycle, which are the diagonalisation of a fixed single-particle Hamiltonian on one hand and the evolution of the mean-field densities and potentials on the other. Throughout the article we use a coordinate-space representation, for which the behaviour of algorithms can be straightforwardly analysed. We propose two algorithmic improvements that are easily implementable in existing solvers, heavy-ball dynamics and potential preconditioning. We demonstrate that these methods can be made virtually parameter-free, requiring no manual fine-tuning to achieve near-optimal performance except for isolated cases. The combination of both methods decreases substantially the CPU time required to obtain converged results. The improvements are illustrated for the MOCCa code that solves the self-consistent HFB problem in a 3d coordinate space representation for parametrisations of the standard Skyrme EDF at next-to-leading order in gradients and its extension to next-to-next-to-leading order.

References

  1. 1.
    M. Bender, P.-H. Heenen, P.-G. Reinhard, Rev. Mod. Phys. 75, 121 (2003)ADSCrossRefGoogle Scholar
  2. 2.
    W. Ryssens, M. Bender, P.-H. Heenen, Phys. Rev. C 92, 064318 (2015)ADSCrossRefGoogle Scholar
  3. 3.
    A. Arzhanov, T.R. Rodríguez, G. Martínez-Pinedo, Phys. Rev. C 94, 054319 (2016)ADSCrossRefGoogle Scholar
  4. 4.
    S. Goriely, N. Chamel, J.M. Pearson, Phys. Rev. Lett. 102, 152503 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    M. Kortelainen, J. McDonnell, W. Nazarewicz, E. Olsen, P.-G. Reinhard, J. Sarich, N. Schunck, S.M. Wild, D. Davesne, J. Erler, A. Pastore, Phys. Rev. C 89, 054314 (2014)ADSCrossRefGoogle Scholar
  6. 6.
    B.G. Carlsson, J. Dobaczewski, M. Kortelainen, Phys. Rev. C 78, 044326 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    F. Raimondi, B.G. Carlsson, J. Dobaczewski, Phys. Rev. C 83, 054311 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    P. Becker, D. Davesne, J. Meyer, J. Navarro, A. Pastore, Phys. Rev. C 96, 044330 (2017)ADSCrossRefGoogle Scholar
  9. 9.
    J.A. Maruhn, P.-G. Reinhard, P.D. Stevenson, A.S. Umar, Comput. Phys. Commun. 185, 2195 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    P. Bonche, H. Flocard, P.H. Heenen, Comput. Phys. Commun. 171, 175 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    W. Ryssens, Symmetry breaking in nuclear mean-field models, PhD Thesis, Université Libre de Bruxelles (2016)Google Scholar
  12. 12.
    W. Ryssens, V. Hellemans, M. Bender, P.-H. Heenen, Comput. Phys. Commun. 187, 75 (2015)CrossRefGoogle Scholar
  13. 13.
    T. Matsuse, RIKEN Rev. 19, 18 (1998)Google Scholar
  14. 14.
    T. Nakatsukasa, Stochastic generation of low-energy configurations and configuration mixing calculation, presentation at the INT Program 13-1a, Computational and Theoretical Advances for Exotic Isotopes in the Medium Mass Region, held at the INT Seattle, USA, March 25 -- April 19, 2013Google Scholar
  15. 15.
    H.J. Mang, B. Samadi, P. Ring, Z. Phys. A 279, 325 (1976)ADSCrossRefGoogle Scholar
  16. 16.
    J.L. Egido, J. Lessing, V. Martin, L.M. Robledo, Nucl. Phys. A 594, 70 (1995)ADSCrossRefGoogle Scholar
  17. 17.
    L.M. Robledo, G.F. Bertsch, Phys. Rev. C 84, 014312 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    E.N.E. van Dalen, H. Müther, Phys. Rev. C 90, 034312 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    R. Jodon, M. Bender, K. Bennaceur, J. Meyer, Phys. Rev. C 94, 024335 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    P. Ring, P. Schuck, The Nuclear Many-Body Problem (Springer Verlag, 1980)Google Scholar
  21. 21.
    J.C. Pei et al., Phys. Rev. C 90, 024317 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    B. Gall et al., Z. Phys. A 348, 183 (1994)ADSCrossRefGoogle Scholar
  23. 23.
    D. Baye, P.-H. Heenen, J. Phys. A 19, 2041 (1986)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    T. Lesinski, M. Bender, K. Bennaceur, T. Duguet, J. Meyer, Phys. Rev. C 76, 014312 (2007)ADSCrossRefGoogle Scholar
  25. 25.
    M. Bender, K. Bennaceur, T. Duguet, P.-H. Heenen, T. Lesinski, J. Meyer, Phys. Rev. C 80, 064302 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    V. Hellemans, P.-H. Heenen, M. Bender, Phys. Rev. C 85, 014326 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    S. Goriely, N. Chamel, J.M. Pearson, Phys. Rev. C 82, 035804 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    J. Sadoudi, T. Duguet, J. Meyer, M. Bender, Phys. Rev. C 88, 064326 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    J. Sadoudi, M. Bender, K. Bennaceur, D. Davesne, R. Jodon, T. Duguet, Phys. Scr. T 154, 014013 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    E. Perlińska, S.G. Rohoziński, J. Dobaczewski, W. Nazarewicz, Phys. Rev. C 69, 014316 (2004)ADSCrossRefGoogle Scholar
  31. 31.
    W. Ryssens, M. Bender, Implementation of N2LO functionals, in preparationGoogle Scholar
  32. 32.
    P. Pulay, Chem. Phys. Lett. 73, 393 (1980)ADSCrossRefGoogle Scholar
  33. 33.
    Y. Zhou, J.R. Chelikowsky, Y. Saad, J. Comput. Phys. 274, 770 (2014)ADSCrossRefGoogle Scholar
  34. 34.
    M.V. Stoitsov, J. Dobaczewski, W. Nazarewicz, P. Ring, Comput. Phys. Commun. 167, 45 (2005)ADSCrossRefGoogle Scholar
  35. 35.
    J. Dobaczewski, J. Dudek, Comput. Phys. Commun. 102, 183 (1997)ADSCrossRefGoogle Scholar
  36. 36.
    K. Bennaceur, Lenteur HFB Code, unpublishedGoogle Scholar
  37. 37.
    C. Rigollet, P. Bonche, H. Flocard, P.-H. Heenen, Phys. Rev. C 59, 3120 (1999)ADSCrossRefGoogle Scholar
  38. 38.
    M. Bender, K. Rutz, P.-G. Reinhard, J.A. Maruhn, Eur. Phys. J. A 8, 59 (2008)ADSCrossRefGoogle Scholar
  39. 39.
    Y. Saad, Numerical Methods for Large Eigenvalue Problems: Revised Edition (Society for Industrial and Applied Mathematics, Philadelphia, 2011)Google Scholar
  40. 40.
    W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vettering, Numerical Recipes: The Art of Scientific Computing, second edition (Cambridge University Press, Cambridge, 1992)Google Scholar
  41. 41.
    K.T.R. Davies, H. Flocard, S. Krieger, M.S. Weiss, Nucl. Phys. A 342, 111 (1980)ADSCrossRefGoogle Scholar
  42. 42.
    P.-G. Reinhard, R.Y. Cusson, Nucl. Phys. A 378, 418 (1982)ADSCrossRefGoogle Scholar
  43. 43.
    G. Goh, Why Momentum Really Works (Distill, 2017)Google Scholar
  44. 44.
    N. Qian, Neural Netw. 12, 145 (1999)CrossRefGoogle Scholar
  45. 45.
    B.T. Polyak, USSR Comput. Math. Math. Phys. 4, 1 (1964)CrossRefGoogle Scholar
  46. 46.
    Y. Nesterov, Introductory Lectures on Convex Optimisation (Springer Verlag US, Boston, 2004)Google Scholar
  47. 47.
    C.K. Gan, P.D. Haynes, M.C. Payne, Comput. Phys. Commun. 134, 33 (2001)ADSCrossRefGoogle Scholar
  48. 48.
    P. Bader, S. Blanes, F. Casas, J. Chem. Phys. 139, 124117 (2013)ADSCrossRefGoogle Scholar
  49. 49.
    R. Car, M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985)ADSCrossRefGoogle Scholar
  50. 50.
    J. Hutter, WIREs Comput. Mol. Sci. 2, 604 (2012)CrossRefGoogle Scholar
  51. 51.
    L. Lin, C. Yang, SIAM J. Sci. Comput. 35, S277 (2012)CrossRefGoogle Scholar
  52. 52.
    V. Hellemans et al., Phys. Rev. C 88, 064323 (2013)ADSCrossRefGoogle Scholar
  53. 53.
    T. Lesinski, K. Bennaceur, T. Duguet, J. Meyer, Phys. Rev. C 74, 044315 (2006)ADSCrossRefGoogle Scholar
  54. 54.
    A. Pastore, D. Davesne, J. Navarro, Phys. Rep. 563, 1 (2015)ADSMathSciNetCrossRefGoogle Scholar
  55. 55.
    M. Martini, A. De Pace, K. Bennaceur, Spurious finite-size instabilities of a new Gogny interaction suitable for astrophysical applications, arXiv:1806.02080Google Scholar
  56. 56.
    G. Gonzalez-Boquera, M. Centenelles, X. Viñas, L.M. Robledo, Comment on the manuscript 1806.02080v1 entitled “Spurious finite-size instabilities of a new Gogny interaction suitable for astrophysical applications”, arXiv:1807.10159Google Scholar
  57. 57.
    M. Kortelainen, T. Lesinski, J. Moré, W. Nazarewicz, J. Sarich, N. Schunck, M.V. Stoitsov, S. Wild, Phys. Rev. C 82, 024313 (2010)ADSCrossRefGoogle Scholar
  58. 58.
    M. Kortelainen, J. McDonnell, W. Nazarewicz, P.-G. Reinhard, J. Sarich, N. Schunck, M.V. Stoitsov, S.M. Wild, Phys. Rev. C 85, 024304 (2012)ADSCrossRefGoogle Scholar
  59. 59.
    G.P. Kerker, Phys. Rev. B 23, 3082 (1981)ADSCrossRefGoogle Scholar
  60. 60.
    V. Blum, G. Lauritsch, J.A. Maruhn, P.-G. Reinhard, J. Comput. Phys. 100, 364 (1992)ADSCrossRefGoogle Scholar
  61. 61.
    A. Baran et al., Phys. Rev. C 78, 014318 (2008)ADSCrossRefGoogle Scholar
  62. 62.
    P. Pulay, J. Comput. Chem. 3, 556 (1982)CrossRefGoogle Scholar
  63. 63.
    K.N. Kudin, G.E. Scuseria, E. Cancès, J. Chem. Phys. 116, 8255 (2002)ADSCrossRefGoogle Scholar
  64. 64.
    W. Ryssens, M. Bender, K. Bennaceur, J. Meyer, P.-H. Heenen, Phys. Rev. C 99, 044315 (2019)ADSCrossRefGoogle Scholar
  65. 65.
    W. Ryssens, M. Bender, P.-H. Heenen, in preparation. Google Scholar
  66. 66.
    P. Bonche, H. Flocard, P.-H. Heenen, Nucl. Phys. A 467, 115 (1987)ADSCrossRefGoogle Scholar
  67. 67.
    J. Terasaki, P.-H. Heenen, H. Flocard, P. Bonche, Nucl. Phys. A 600, 371 (1996)ADSCrossRefGoogle Scholar
  68. 68.
    N. Schunck et al., Comput. Phys. Commun. 183, 166 (2012)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Center for Theoretical Physics, Sloane Physics LaboratoryYale UniversityNew HavenUSA
  2. 2.IPNL, Université de Lyon, Université Lyon 1, CNRS/IN2P3VilleurbanneFrance
  3. 3.PNTPM, CP229Université Libre de BruxellesBruxellesBelgium

Personalised recommendations