Advertisement

Monopole moments and the \( \beta\)-vibration in deformed nuclei

  • G. F. BertschEmail author
Regular Article - Theoretical Physics
  • 16 Downloads
Part of the following topical collections:
  1. Giant, Pygmy, Pairing Resonances and Related Topics

Abstract.

I revisit the theory of the \( \beta\)-vibration in deformed nuclei focusing on the transition matrix elements to the ground band. The relation between monopole and quadrupole matrix elements is derived from an incompressibility assumption and is validated by self-consistent mean-field theory with several energy density functionals. With estimates of the deformation-dependent mean-field potential energy function, it is found that the excited \( 0^+\) band in 156Gd comes fairly close to meeting the criteria to be classified as a \( \beta\)-vibration.

Notes

References

  1. 1.
    A. Bracco et al., Phys. Rev. Lett. 60, 2603 (1988)ADSCrossRefGoogle Scholar
  2. 2.
    N. Van Giai, P.F. Bortignon et al., Nucl. Phys. A 687, 170 (2001)CrossRefGoogle Scholar
  3. 3.
    G. Colo, N. Van Giai, P.F. Bortignon, Phys. At. Nucl. 64, 1044 (2001)CrossRefGoogle Scholar
  4. 4.
    P.E. Garrett, J. Phys. G 27, R1 (2001)ADSCrossRefGoogle Scholar
  5. 5.
    H.B.G. Casimir, Physica A 2, 719 (1935)Google Scholar
  6. 6.
    A.S. Reiner, Nucl. Phys. 71, 115 (1961)CrossRefGoogle Scholar
  7. 7.
    A. Bohr, B. Mottelson, Nuclear Structure (Benjamin, Reading, 1975) p. 174Google Scholar
  8. 8.
    J.F. Berger, M. Girod, D. Gogny, Comput. Phys. Commun. 63, 365 (1991)ADSCrossRefGoogle Scholar
  9. 9.
    M. Baldo, L.M. Robledo, P. Schuck, X. Vinas, Phys. Rev. C 87, 064305 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    E. Chabanat, P. Bonche, P. Haensel, J. Meyer, R. Schaeffer, Nucl. Phys. A 635, 231 (1998)ADSCrossRefGoogle Scholar
  11. 11.
    A. Aprahamian et al., Phys. Rev. C 98, 034303 (2018)ADSCrossRefGoogle Scholar
  12. 12.
    L.M. Robledo, unpublishedGoogle Scholar
  13. 13.
    P. Bonche, H. Flocard, P.H. Heenen, Comput. Phys. Commun. 171, 49 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    J. Rasmussen, Nucl. Phys. 19, 85 (1960)CrossRefGoogle Scholar
  15. 15.
    T. Kibedi, R.H. Spear, At. Data Nucl. Data Tables 89, 77 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    J.P. Delaroche et al., Phys. Rev. C 81, 014303 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    P.F. Bortignon, R.A. Broglia, Eur. Phys. J. A 52, 280 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    H. Uhrenholt et al., Nucl. Phys. A 913, 127 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physics and Institute of Nuclear TheoryUniversity of WashingtonSeattleUSA

Personalised recommendations