Advertisement

Centrality dependence of freeze-out temperature fluctuations in Pb-Pb collisions at the LHC

  • Dariusz ProrokEmail author
Open Access
Regular Article - Theoretical Physics
  • 10 Downloads

Abstract.

Many data in the High Energy Physics are, in fact, sample means. It is shown that when this exact meaning of the data is taken into account and the most weakly bound states are removed from the hadron resonance gas, the whole spectra of pions, kaons and protons measured at midrapidity in Pb-Pb collisions at \( \sqrt{s_{NN}} = 2.76\) TeV can be fitted simultaneously. The invariant distributions are predicted with the help of the single-freeze-out model in the chemical equilibrium framework. The method is applied to the measurements in centrality bins of Pb-Pb collisions and gives acceptable fits for all but peripheral bins. The comparison with the results obtained in the framework of the original single-freeze-out model is also presented. Some more general, possible implications of this approach are pointed out.

References

  1. 1.
    S. Leupold et al., Lect. Notes Phys. 814, 39 (2011)ADSCrossRefGoogle Scholar
  2. 2.
    P. Huovinen, Int. J. Mod. Phys. E 22, 1330029 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    P. Braun-Munzinger, K. Redlich, J. Stachel, Quark-Gluon Plasma 3 (World Scientific, Singapore, 2004) pp. 491--599Google Scholar
  4. 4.
    U.W. Heinz, arXiv:hep-ph/0407360, unpublishedGoogle Scholar
  5. 5.
    W. Broniowski, W. Florkowski, Phys. Rev. Lett. 87, 272302 (2001)ADSCrossRefGoogle Scholar
  6. 6.
    W. Broniowski, W. Florkowski, Phys. Rev. C 65, 064905 (2002)ADSCrossRefGoogle Scholar
  7. 7.
    ALICE Collaboration (B. Abelev et al.), Phys. Rev. Lett. 109, 252301 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    ALICE Collaboration (B. Abelev et al.), Phys. Rev. C 88, 044910 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    J. Stachel, A. Andronic, P. Braun-Munzinger, K. Redlich, J. Phys. Conf. Ser. 509, 012019 (2014)CrossRefGoogle Scholar
  10. 10.
    I. Melo, B. Tomasik, J. Phys. G 43, 015102 (2016)ADSCrossRefGoogle Scholar
  11. 11.
    M. Floris, Nucl. Phys. A 931, 103 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    P. Huovinen, P.M. Lo, M. Marczenko, K. Morita, K. Redlich, C. Sasaki, Phys. Lett. B 769, 509 (2017)ADSCrossRefGoogle Scholar
  13. 13.
    V. Vovchenko, M.I. Gorenstein, H. Stoecker, Phys. Rev. C 98, 034906 (2018)ADSCrossRefGoogle Scholar
  14. 14.
    D. Prorok, J. Phys. G 43, 055101 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    D. Prorok, Acta Phys. Pol. B 40, 2825 (2009)ADSGoogle Scholar
  16. 16.
    L. Milano, CERN-THESIS-2012-251, unpublishedGoogle Scholar
  17. 17.
    G. Cowan, Statistical Data Analysis (Oxford University Press, Oxford, 1998)Google Scholar
  18. 18.
    F. James, Statistical Methods in Experimental Physics (World Scientific, Singapore, 2006)Google Scholar
  19. 19.
    Particle Data Group Collaboration (K.A. Olive et al.), Chin. Phys. C 38, 090001 (2014)CrossRefGoogle Scholar
  20. 20.
    W. Broniowski, F. Giacosa, V. Begun, Phys. Rev. C 92, 034905 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    E. Schnedermann, J. Sollfrank, U. Heinz, Phys. Rev. C 48, 2462 (1993)ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  1. 1.Institute of Theoretical PhysicsUniversity of WrocławWrocławPoland

Personalised recommendations