Advertisement

Extracting nuclear symmetry energies at high densities from observations of neutron stars and gravitational waves

  • Nai-Bo Zhang
  • Bao-An LiEmail author
Regular Article - Theoretical Physics
  • 1 Downloads
Part of the following topical collections:
  1. First joint gravitational wave and electromagnetic observations: Implications for nuclear and particle physics

Abstract.

By numerically inverting the Tolman-Oppenheimer-Volkov (TOV) equation using an explicitly isospin-dependent parametric Equation of State (EOS) of dense neutron-rich nucleonic matter, a restricted EOS parameter space is established using observational constraints on the radius, maximum mass, tidal deformability and causality condition of neutron stars (NSs). The constraining band obtained for the pressure as a function of energy (baryon) density is in good agreement with that extracted recently by the LIGO+Virgo Collaborations from their improved analyses of the NS tidal deformability in GW170817. Rather robust upper and lower boundaries on nuclear symmetry energies are extracted from the observational constraints up to about twice the saturation density \(\rho_{0}\) of nuclear matter. More quantitatively, the symmetry energy at \(2\rho_{0}\) is constrained to \( E_{\mathrm{sym}}(2\rho_{0})= 46.9\pm 10.1\) MeV excluding many existing theoretical predictions scattered between \( E_{\mathrm{sym}}(2\rho_{0}) =15\) and 100 MeV. Moreover, by studying variations of the causality surface where the speed of sound equals that of light at central densities of the most massive neutron stars within the restricted EOS parameter space, the absolutely maximum mass of neutron stars is found to be 2.40 \( \mathrm{M}_{\odot}\) approximately independent of the EOSs used. This limiting mass is consistent with findings of several recent analyses and numerical general relativity simulations about the maximum mass of the possible super-massive remanent produced in the immediate aftermath of GW170817. deformability

References

  1. 1.
    P. Danielewicz, R. Lacey, W.G. Lynch, Science 298, 1592 (2002)ADSCrossRefGoogle Scholar
  2. 2.
    J.M. Lattimer, M. Prakash, Phys. Rep. 621, 127 (2016)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    A.L. Watts, N. Andersson, D. Chakrabarty, M. Feroci, K. Hebeler, G. Israel, F.K. Lamb, M.C. Miller, S. Morsink, F. Özel, A. Patruno, J. Poutanen, D. Psaltis, A. Schwenk, A.W. Steiner, L. Stella, L. Tolos, M. van der Klis, Rev. Mod. Phys. 88, 021001 (2016)ADSCrossRefGoogle Scholar
  4. 4.
    M. Oertel, M. Hempel, T. Klähn, S. Typel, Rev. Mod. Phys. 89, 015007 (2017)ADSCrossRefGoogle Scholar
  5. 5.
    F. Özel, P. Freire, Annu. Rev. Astron. Astrophys. 54, 401 (2016)ADSCrossRefGoogle Scholar
  6. 6.
    B.A. Li, Nucl. Phys. News 27, 7 (2017)CrossRefGoogle Scholar
  7. 7.
    D. Blaschke, N. Chamel, arXiv:1803.01836, White Book of ``NewCompStar'' European COST Action MP1304Google Scholar
  8. 8.
    I. Bombaci, U. Lombardo, Phys. Rev. C 44, 1892 (1991)ADSCrossRefGoogle Scholar
  9. 9.
    B.A. Li, C.M. Ko, W. Bauer, Int. J. Mod. Phys. E 7, 147 (1998)ADSCrossRefGoogle Scholar
  10. 10.
    V. Baran, M. Colonna, V. Greco, M. Di Toro, Phys. Rep. 410, 335 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    A.W. Steiner, M. Prakash, J.M. Lattimer, P.J. Ellis, Phys. Rep. 411, 325 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    B.A. Li, L.W. Chen, C.M. Ko, Phys. Rep. 464, 113 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    W. Trautmann, H.H. Wolter, Int. J. Mod. Phys. E 21, 1230003 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    M.B. Tsang, J.R. Stone, F. Camera, P. Danielewicz, S. Gandolfi, K. Hebeler, C.J. Horowitz, J. Lee, W.G. Lynch, Z. Kohley, R. Lemmon, P. Moller, T. Murakami, S. Riordan, X. Roca-Maza, F. Sammarruca, A.W. Steiner, I. Vidaňa, S.J. Yennello, Phys. Rev. C 86, 105803 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    B.A. Li, À. Ramos, G. Verde, I. Vidaňa (Editors), Topical issue on nuclear symmetry energy, Eur. Phys. J. A, Vol. 50, No.2 (SIF, Springer, 2014)Google Scholar
  16. 16.
    C.J. Horowitz, E.F. Brown, Y. Kim, W.G. Lynch, R. Michaels, A. Ono, J. Piekarewicz, M.B. Tsang, H.H. Wolter, J. Phys. G 41, 093001 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    M. Baldo, G.F. Burgio, Prog. Part. Nucl. Phys. 91, 203 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    X. Roca-maza, M. Centelles, X. Vinas, M. Warda, Phys. Rev. Lett. 106, 252501 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    M. Dutra, O. Louren, J.S.S. Martins, A. Delfino, J.R. Stone, P.D. Stevenson, Phys. Rev. C 85, 035201 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    M. Dutra, O. Louren, S.S. Avancini, B.V. Carlson, A. Delfino, D.P. Menezes, C. Providencia, S. Typel, J.R. Stone, Phys. Rev. C 90, 055203 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    L.W. Chen, Nucl. Phys. Rev. 34, 20 (2017)Google Scholar
  22. 22.
    I. Vidana, C. Providencia, A. Polls, A. Rios, Phys. Rev. C 80, 045806 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    Z.H. Li, H.J. Schulze, Phys. Rev. C 78, 028801 (2008)ADSCrossRefGoogle Scholar
  24. 24.
    T. Klähn, D. Blaschke, S. Typel, E.N.E. van Dalen, A. Faessler, C. Fuchs, T. Gaitanos, H. Grigorian, A. Ho, E.E. Kolomeitsev, M.C. Miller, G. Röpke, J. Trümper, D.N. Voskresensky, F. Weber, H.H. Wolter, Phys. Rev. C 74, 035802 (2006)ADSCrossRefGoogle Scholar
  25. 25.
    F. Sammarruca, Int. J. Mod. Phys. E 19, 1259 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    A. Akmal, V.R. Pandharipande, D.G. Ravenhall, Phys. Rev. C 58, 1804 (1998)ADSCrossRefGoogle Scholar
  27. 27.
    B. Friedman, V.R. Pandharipande, Nucl. Phys. A 361, 502 (1981)ADSCrossRefGoogle Scholar
  28. 28.
    R.B. Wiringa, V. Fiks, A. Fabrocini, Phys. Rev. C 38, 1010 (1988)ADSCrossRefGoogle Scholar
  29. 29.
    F. Sammarruca, Phys. Rev. C 90, 064312 (2014)ADSCrossRefGoogle Scholar
  30. 30.
    J.M. Lattimer, M. Prakash, Astrophys. J. 550, 426 (2001)ADSCrossRefGoogle Scholar
  31. 31.
    L.W. Chen, EPJ Web of Conferences 88, 00017 (2015)CrossRefGoogle Scholar
  32. 32.
    W.G. Newton et al., Eur. Phys. J. A 50, 41 (2014)ADSCrossRefGoogle Scholar
  33. 33.
    D.H. Wen, B.A. Li, L.W. Chen, Phys. Rev. Lett. 103, 211102 (2009)ADSCrossRefGoogle Scholar
  34. 34.
    X.T. He, F.J. Fattoyev, B.A. Li, W.G. Newton, Phys. Rev. C 91, 015810 (2015)ADSCrossRefGoogle Scholar
  35. 35.
    B.A. Li, B.J. Cai, L.W. Chen, J. Xu, Prog. Part. Nucl. Phys. 99, 29 (2018)ADSCrossRefGoogle Scholar
  36. 36.
    The 2015 U.S. Long Range Plan for Nuclear Science, Reaching for the Horizon, https://science.energy.gov/~/media/np/nsac/pdf/2015LRP/2015_LRPNS_091815.pdf
  37. 37.
    The Nuclear Physics European Collaboration Committee (NuPECC) Long Range Plan 2017, Perspectives in Nuclear Physics, http://www.esf.org/fileadmin/user_upload/esf/Nupecc-LRP2017.pdf
  38. 38.
    LIGO and Virgo Collaborations (B.P. Abbott et al.), Phys. Rev. Lett. 121, 161101 (2018)ADSCrossRefGoogle Scholar
  39. 39.
    A. Bauswein, O. Just, H.T. Janka, N. Stergioulas, Astrophys. J. Lett. 850, L34 (2017)ADSCrossRefGoogle Scholar
  40. 40.
    B. Margalit, B.D. Metzger, Astrophys. J. 850, L19 (2017)ADSCrossRefGoogle Scholar
  41. 41.
    M. Shibata, S. Fujibayashi, K. Hotokezaka, K. Kiuchi, K. Kyutoku, Y. Sekiguchi, M. Tanaka, Phys. Rev. D 96, 123012 (2017)ADSCrossRefGoogle Scholar
  42. 42.
    L. Rezzolla, E.R. Most, L.R. Weih, Astrophys. J. 852, L25 (2018)ADSCrossRefGoogle Scholar
  43. 43.
    M. Ruiz, S.L. Shapiro, A. Tsokaros, Phys. Rev. D 97, 021501(R) (2018)ADSCrossRefGoogle Scholar
  44. 44.
    D. Radice, A. Perego, F. Zappa, S. Bernuzzi, Astrophys. J. 852, L29 (2018)ADSCrossRefGoogle Scholar
  45. 45.
    N.B. Zhang, B.A. Li, J. Xu, Astrophys. J. 859, 90 (2018)ADSCrossRefGoogle Scholar
  46. 46.
    R.C. Tolman, Proc. Natl. Acad. Sci. U.S.A. 20, 3 (1934)Google Scholar
  47. 47.
    J.R. Oppenheimer, G.M. Volkoff, Phys. Rev. 55, 374 (1939)ADSCrossRefGoogle Scholar
  48. 48.
    T. Hinderer, Astrophys. J. 677, 1216 (2008)ADSCrossRefGoogle Scholar
  49. 49.
    T. Hinderer, B.D. Lackey, R.N. Lang, J.S. Read, Phys. Rev. D 81, 123016 (2010)ADSCrossRefGoogle Scholar
  50. 50.
    F.J. Fattoyev, J. Carvajal, W.G. Newton, B.A. Li, Phys. Rev. C 87, 015806 (2013)ADSCrossRefGoogle Scholar
  51. 51.
    F.J. Fattoyev, W.G. Newton, B.A. Li, Eur. Phys. J. A 50, 45 (2014)ADSCrossRefGoogle Scholar
  52. 52.
    L. Lindblom, Phys. Rev. D 82, 103011 (2010)ADSCrossRefGoogle Scholar
  53. 53.
    L. Lindblom, Phys. Rev. D 97, 123019 (2018)ADSCrossRefGoogle Scholar
  54. 54.
    Stefano Gandolfi, Alexandros Gezerlis, J. Carlson, Annu. Rev. Nucl. Part. Sci. 65, 303 (2015)ADSCrossRefGoogle Scholar
  55. 55.
    W.G. Newton, M. Gearheart, B.A. Li, Astrophys. J. Suppl. Ser. 204, 9 (2012)ADSCrossRefGoogle Scholar
  56. 56.
    F.J. Fattoyev, W.G. Newton, J. Xu, B.A. Li, Phys. Rev. C 86, 025804 (2012)ADSCrossRefGoogle Scholar
  57. 57.
    K. Hebeler, J.M. Lattimer, C.J. Pethick, A. Schwenk, Phys. Rev. Lett. 105, 161102 (2010)ADSCrossRefGoogle Scholar
  58. 58.
    S. Gandolfi, J. Carlson, S. Reddy, Phys. Rev. C 85, 032801 (2012)ADSCrossRefGoogle Scholar
  59. 59.
    I. Tews, J.M. Lattimer, A. Ohnishi, E.E. Kolomeitsev, Astrophys. J. 848, 105 (2017)ADSCrossRefGoogle Scholar
  60. 60.
    Bao-An Li, Lie-Wen Chen, Che Ming Ko, Andrew W. Steiner, Rev. Mex. Fis. S52, 56 (2006)Google Scholar
  61. 61.
    S. Shlomo, V.M. Kolomietz, G. Colò, Eur. Phys. J. A 30, 23 (2006)ADSCrossRefGoogle Scholar
  62. 62.
    J. Piekarewicz, J. Phys. G 37, 064038 (2010)ADSCrossRefGoogle Scholar
  63. 63.
    B.A. Li, X. Han, Phys. Lett. B 727, 276 (2013)ADSCrossRefGoogle Scholar
  64. 64.
    N.B. Zhang, B.J. Cai, B.A. Li, W.G. Newton, J. Xu, Nucl. Sci. Tech. 28, 181 (2017)CrossRefGoogle Scholar
  65. 65.
    J.W. Negele, D. Vautherin, Nucl. Phys. A 207, 298 (1973)ADSCrossRefGoogle Scholar
  66. 66.
    G. Baym, C.J. Pethick, P. Sutherland, Astrophys. J. 170, 299 (1971)ADSCrossRefGoogle Scholar
  67. 67.
    P.B. Demorest et al., Nature 467, 1081 (2010)ADSCrossRefGoogle Scholar
  68. 68.
    J. Antoniadis et al., Science 340, 448 (2013)ADSCrossRefGoogle Scholar
  69. 69.
    M. Linares, T. Shahbaz, J. Casares, Astrophys. J. 859, 54 (2018)ADSCrossRefGoogle Scholar
  70. 70.
    LIGO+Virgo Collaborations (B.P. Abbott et al.), Phys. Rev. Lett. 119, 161101 (2017)ADSCrossRefGoogle Scholar
  71. 71.
    S. Ai, H. Gao, Z.G. Dai, X.F. Wu, A. Li, B. Zhang, Astrophys. J. 860, 57 (2018)ADSCrossRefGoogle Scholar
  72. 72.
    E.P. Zhou, X. Zhou, A. Li, Phys. Rev. D 97, 083015 (2018)ADSCrossRefGoogle Scholar
  73. 73.
    M. Prakash, T.L. Ainsworth, J.M. Lattimer, Phys. Rev. Lett. 61, 2518 (1988)ADSCrossRefGoogle Scholar
  74. 74.
    B.A. Li, A.W. Steiner, Phys. Lett. B 642, 436 (2006)ADSCrossRefGoogle Scholar
  75. 75.
    J. Xu, L.W. Chen, B.A. Li, H.R. Ma, Astrophys. J. 697, 1549 (2009)ADSCrossRefGoogle Scholar
  76. 76.
    J.M. Lattimer, A.W. Steiner, Eur. Phys. J. A 50, 40 (2014)ADSCrossRefGoogle Scholar
  77. 77.
    J.M. Lattimer, M. Prakash, Phys. Rep. 442, 109 (2007)ADSCrossRefGoogle Scholar
  78. 78.
    J.M. Lattimer, M. Prakash, in From Nuclei to Stars, edited by S. Lee (WorldScientific, 2011) p. 275Google Scholar
  79. 79.
    L. Lindblom, Astrophys. J. 278, 364 (1984)ADSCrossRefGoogle Scholar
  80. 80.
    C.E. Rhoades Jr., R. Ruffini, Phys. Rev. Lett. 32, 324 (1974)ADSCrossRefGoogle Scholar
  81. 81.
    N.K. Glendenning, Phys. Rev. D 46, 4161 (1992)ADSCrossRefGoogle Scholar
  82. 82.
    S. Koranda, N. Stergioulas, J.L. Friedman, Astrophys. J. 488, 799 (1997)ADSCrossRefGoogle Scholar
  83. 83.
    J.M. Lattimer, M. Prakash, D. Masak, A. Yahil, Astrophys. J. 355, 241 (1990)ADSCrossRefGoogle Scholar
  84. 84.
    Z.Y. Zhu, E.P. Zhou, A. Li, Astrophys. J. 862, 98 (2018)ADSCrossRefGoogle Scholar
  85. 85.
    P.S. Koliogiannis, Ch.C. Moustakidis, arXiv:1806.09999Google Scholar
  86. 86.
    J.M. Lattimer, M. Prakash, Phys. Rev. Lett. 94, 111101 (2005)ADSCrossRefGoogle Scholar
  87. 87.
    L. Lindblom, Astrophys. J. 398, 569 (1992)ADSCrossRefGoogle Scholar
  88. 88.
    A.W. Steiner, J.M. Lattimer, E.F. Brown, Astrophys. J. 722, 33 (2010)ADSCrossRefGoogle Scholar
  89. 89.
    F. Özel, D. Psaltis, T. Güver, G. Baym, C. Heinke, C. Guillot, Astrophys. J. 820, 28 (2016)ADSCrossRefGoogle Scholar
  90. 90.
    S. Bogdanov, C.O. Heinke, F. Özel, T. Güver, Astrophys. J. 831, 184 (2016)ADSCrossRefGoogle Scholar
  91. 91.
    C.A. Raithel, F. Özel, D. Psaltis, Astrophys. J. 831, 44 (2016)ADSCrossRefGoogle Scholar
  92. 92.
    C.A. Raithel, F. Özel, D. Psaltis, Astrophys. J. 844, 156 (2017)ADSCrossRefGoogle Scholar
  93. 93.
    A.W. Steiner, C.O. Heinke, S. Bogdanov, C. Li, W.C.G. Ho, A. Bahramian, S. Han, Mon. Not. R. Astron. Soc. 476, 421 (2018)ADSCrossRefGoogle Scholar
  94. 94.
    M.C. Miller, F.K. Lamb, Eur. Phys. J. A 52, 63 (2016)ADSCrossRefGoogle Scholar
  95. 95.
    E. Annala, T. Gorda, A. Kurkela, A. Vuorinen, Phys. Rev. Lett. 120, 172703 (2018)ADSCrossRefGoogle Scholar
  96. 96.
    F.J. Fattoyev, J. Piekarewicz, C.J. Horowitz, Phys. Rev. Lett. 120, 172702 (2018)ADSCrossRefGoogle Scholar
  97. 97.
    E.R. Most, L.R. Weih, L. Rezzolla, J. Schaffner-Bielich, Phys. Rev. Lett. 120, 261103 (2018)ADSCrossRefGoogle Scholar
  98. 98.
    P.G. Krastev, B.A. Li, arXiv:1801.04620Google Scholar
  99. 99.
    C. Raithel, F. Özel, D. Psaltis, Astrophys. J. Lett. 857, L23 (2018)ADSCrossRefGoogle Scholar
  100. 100.
    I. Tews, J. Margueron, S. Reddy, Phys. Rev. C 98, 045804 (2018)ADSCrossRefGoogle Scholar
  101. 101.
    T. Malik, N. Alam, M. Fortin, C. Providência, B.K. Agrawal, T.K. Jha, B. Kumar, S.K. Patra, Phys. Rev. C 98, 035804 (2018)ADSCrossRefGoogle Scholar
  102. 102.
    Y. Lim, J.W. Holt, Phys. Rev. Lett. 121, 062701 (2018)ADSCrossRefGoogle Scholar
  103. 103.
    S. De, D. Finstad, J.M. Lattimer, D.A. Brown, E. Berger, C.M. Biwer, Phys. Rev. Lett. 121, 091102 (2018)ADSCrossRefGoogle Scholar
  104. 104.
    J.W.T. Hessels, S.M. Ransom, I.H. Stairs, P.C.C. Freire, V.M. Kaspi, F. Camilo, Science 311, 1901 (2006)ADSCrossRefGoogle Scholar
  105. 105.
    C.Y. Tsang, M.B. Tsang, P. Danielewicz, W.G. Lynch, F.J. Fattoyev, arXiv:1807.06571Google Scholar
  106. 106.
    C.B. Das, S.D. Gupta, C. Gale, B.A. Li, Phys. Rev. C 67, 034611 (2003)ADSCrossRefGoogle Scholar
  107. 107.
    L.W. Chen, C.M. Ko, B.A. Li, Phys. Rev. Lett. 94, 032701 (2005)ADSCrossRefGoogle Scholar
  108. 108.
    B.A. Li, L.W. Chen, Phys. Rev. C 72, 064611 (2005)ADSCrossRefGoogle Scholar
  109. 109.
    M.B. Tsang et al., Phys. Rev. Lett. 92, 062701 (2004)ADSCrossRefGoogle Scholar
  110. 110.
    P.G. Krastev, B.A. Li, A. Worley, Phys. Lett. B 668, 1 (2008)ADSCrossRefGoogle Scholar
  111. 111.
    P.G. Krastev, B.A. Li, A. Worley, Astrophys. J. 676, 1170 (2008)ADSCrossRefGoogle Scholar
  112. 112.
    A. Worley, P.G. Krastev, B.A. Li, Astrophys. J. 685, 390 (2008)ADSCrossRefGoogle Scholar
  113. 113.
    D.H. Wen, B.A. Li, P.G. Krastev, Phys. Rev. C 80, 025801 (2009)ADSCrossRefGoogle Scholar
  114. 114.
    W.G. Newton, B.A. Li, Phys. Rev. C 80, 065809 (2009)ADSCrossRefGoogle Scholar
  115. 115.
    N.B. Zhang, B.A. Li, J. Phys. G: Nucl. Part. Phys. 46, 014002 (2019)ADSCrossRefGoogle Scholar
  116. 116.
    N.B. Zhang, B.A. Li, Nucl. Sci. Tech. 29, 178 (2018)ADSCrossRefGoogle Scholar
  117. 117.
    M. Alford, M. Braby, M. Paris, S. Reddy, Astrophys. J. 629, 969 (2005)ADSCrossRefGoogle Scholar
  118. 118.
    A. Akmal, V.R. Pandharipande, Phys. Rev. C 56, 2261 (1997)ADSCrossRefGoogle Scholar
  119. 119.
    L. Engvik et al., Astrophys. J. 469, 794 (1996)ADSCrossRefGoogle Scholar
  120. 120.
    H. Muther, M. Prakash, T.L. Ainsworth, Phys. Lett. B 199, 469 (1987)ADSCrossRefGoogle Scholar
  121. 121.
    F. Douchin, P. Haensel, Astron. Astrophys. 380, 151 (2001)ADSCrossRefGoogle Scholar
  122. 122.
    Z.Y. Zhu, A. Li, J.N. Hu, H. Shen, Phys. Rev. C 99, 025804 (2019) arXiv:1805.04678ADSCrossRefGoogle Scholar
  123. 123.
    W. Trautmann, talk given at the 8th International Symposium on Nuclear Symmetry Energy (NuSYM2018), Busan, South Korea, September 10-13, 2018, http://nuclear.korea.ac.kr/indico/contributionListDisplay.py?confId=330
  124. 124.
    P. Russotto et al., Phys. Lett. B 697, 471 (2011)ADSCrossRefGoogle Scholar
  125. 125.
    P. Russotto et al., Phys. Rev. C 94, 034608 (2016)ADSCrossRefGoogle Scholar
  126. 126.
    Z.G. Xiao, B.A. Li, L.W. Chen, G.C. Yong, M. Zhang, Phys. Rev. Lett. 102, 062502 (2009)ADSCrossRefGoogle Scholar
  127. 127.
    Transport Model Comparison Project (J. Xu et al.), Phys. Rev. C 93, 44609 (2016)CrossRefGoogle Scholar
  128. 128.
    Y.X. Zhang et al., Phys. Rev. C 97, 034625 (2018)ADSCrossRefGoogle Scholar
  129. 129.
    Jerzy Lukasik, arXiv:1810.01844, to be published in Proceedings of the IWM-EC 2018 Conference, Il Nuovo Cimento C (SIF, 2019)Google Scholar
  130. 130.
    W.G. Lynch, talk given at the 8th International Symposium on Nuclear Symmetry Energy (NuSYM2018), Busan, South Korea, September 10-13, 2018, http://nuclear.korea.ac.kr/indico/contributionListDisplay.py?confId=330
  131. 131.
    J.M. Lattimer, C.J. Pethick, M. Prakash, P. Haensel, Phys. Rev. Lett. 66, 2701 (1991)ADSCrossRefGoogle Scholar
  132. 132.
    T. Klahn, D. Blaschke, S. Typel, E.N.E. van Dalen, A. Faessler, C. Fuchs, T. Gaitanos, H. Grigorian, A. Ho, E.E. Kolomeitsev, M.C. Miller, G. Ropke, J. Trumper, D.N. Voskresensky, F. Weber, H.H. Wolter, Phys. Rev. C 74, 035802 (2006)ADSCrossRefGoogle Scholar
  133. 133.
    E.F. Brown, A. Cumming, F.J. Fattoyev, C.J. Horowitz, D. Page, S. Reddy, Phys. Rev. Lett. 120, 182701 (2018)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, School of Space Science and Physics, Institute of Space SciencesShandong UniversityWeihaiChina
  2. 2.Department of Physics and AstronomyTexas A&M University-CommerceCommerceUSA

Personalised recommendations