Advertisement

Lattice improvement in lattice effective field theory

  • Nico KleinEmail author
  • Dean Lee
  • Ulf -G. Meißner
Regular Article - Theoretical Physics
  • 30 Downloads

Abstract.

Lattice calculations using the framework of effective field theory have been applied to a wide range of few-body and many-body systems. One of the challenges of these calculations is to remove systematic errors arising from the nonzero lattice spacing. Fortunately, the lattice improvement program pioneered by Symanzik provides a formalism for doing this. While lattice improvement has already been utilized in lattice effective field theory calculations, the effectiveness of the improvement program has not been systematically benchmarked. In this work we use lattice improvement to remove lattice errors for a one-dimensional system of bosons with zero-range interactions. We construct the improved lattice action up to next-to-next-to-leading order and verify that the remaining errors scale as the fourth power of the lattice spacing for observables involving as many as five particles. Our results provide a guide for increasing the accuracy of future calculations in lattice effective field theory with improved lattice actions.

References

  1. 1.
    J.M. Alarcón et al., Eur. Phys. J. A 53, 83 (2017)ADSCrossRefGoogle Scholar
  2. 2.
    N. Li, S. Elhatisari, E. Epelbaum, D. Lee, B.N. Lu, U.-G. Meißner, Phys. Rev. C 98, 044002 (2018)ADSCrossRefGoogle Scholar
  3. 3.
    E. Epelbaum, H. Krebs, D. Lee, U.-G. Meißner, Phys. Rev. Lett. 106, 192501 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    E. Epelbaum, H. Krebs, T.A. Lähde, D. Lee, U.-G. Meißner, Phys. Rev. Lett. 109, 252501 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    T.A. Lähde, E. Epelbaum, H. Krebs, D. Lee, U.-G. Meißner, G. Rupak, Phys. Lett. B 732, 110 (2014)ADSCrossRefGoogle Scholar
  6. 6.
    E. Epelbaum, H. Krebs, T.A. Lähde, D. Lee, U.-G. Meißner, G. Rupak, Phys. Rev. Lett. 112, 102501 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    S. Elhatisari et al., Phys. Rev. Lett. 117, 132501 (2016)ADSCrossRefGoogle Scholar
  8. 8.
    S. Elhatisari et al., Phys. Rev. Lett. 119, 222505 (2017)ADSCrossRefGoogle Scholar
  9. 9.
    G. Rupak, D. Lee, Phys. Rev. Lett. 111, 032502 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    S. Elhatisari, D. Lee, U.-G. Meißner, G. Rupak, Eur. Phys. J. A 52, 174 (2016)ADSCrossRefGoogle Scholar
  11. 11.
    S. Elhatisari, D. Lee, G. Rupak, E. Epelbaum, H. Krebs, T.A. Lähde, T. Luu, U.-G. Meißner, Nature 528, 111 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    S. Bour, H.-W. Hammer, D. Lee, U.-G. Meißner, Phys. Rev. C 86, 034003 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    S. Elhatisari, K. Katterjohn, D. Lee, U.-G. Meißner, G. Rupak, Phys. Lett. B 768, 337 (2017)ADSCrossRefGoogle Scholar
  14. 14.
    A. Bulgac, J.E. Drut, P. Magierski, Phys. Rev. Lett. 96, 090404 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    D. Lee, Phys. Rev. C 78, 024001 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    J. Carlson, S. Gandolfi, K.E. Schmidt, S. Zhang, Phys. Rev. A 84, 061602 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    M.G. Endres, D.B. Kaplan, J.W. Lee, A.N. Nicholson, Phys. Rev. A 87, 023615 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    S. Bour, D. Lee, H.-W. Hammer, U.-G. Meißner, Phys. Rev. Lett. 115, 185301 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    J. Braun, J.E. Drut, D. Roscher, Phys. Rev. Lett. 114, 050404 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    E.R. Anderson, J.E. Drut, Phys. Rev. Lett. 115, 115301 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    D. Lee, Phys. Rev. A 73, 063204 (2006)ADSCrossRefGoogle Scholar
  22. 22.
    N. Klein, S. Elhatisari, T.A. Lähde, D. Lee, U.-G. Meißner, Eur. Phys. J. A 54, 121 (2018)ADSCrossRefGoogle Scholar
  23. 23.
    J.A. Tjon, Phys. Lett. B 56, 217 (1975)ADSCrossRefGoogle Scholar
  24. 24.
    L. Platter, H.-W. Hammer, U.-G. Meißner, Phys. Lett. B 607, 254 (2005)ADSCrossRefGoogle Scholar
  25. 25.
    I. Montvay, C. Urbach, Eur. Phys. J. A 48, 38 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    N. Klein, D. Lee, W. Liu, U.-G. Meißner, Phys. Lett. B 747, 511 (2015)ADSCrossRefGoogle Scholar
  27. 27.
    K. Symanzik, Nucl. Phys. B 226, 187 (1983)ADSCrossRefGoogle Scholar
  28. 28.
    K. Symanzik, Nucl. Phys. B 226, 205 (1983)ADSCrossRefGoogle Scholar
  29. 29.
    M. Lüscher, P. Weisz, Commun. Math. Phys. 97, 59 (1985) 98ADSCrossRefGoogle Scholar
  30. 30.
    B. Sheikholeslami, R. Wohlert, Nucl. Phys. B 259, 572 (1985)ADSCrossRefGoogle Scholar
  31. 31.
    M. Lüscher, S. Sint, R. Sommer, P. Weisz, Nucl. Phys. B 478, 365 (1996)ADSCrossRefGoogle Scholar
  32. 32.
    M. Lüscher, S. Sint, R. Sommer, P. Weisz, U. Wolff, Nucl. Phys. B 491, 323 (1997)ADSCrossRefGoogle Scholar
  33. 33.
    J.B. McGuire, J. Math. Phys. 5, 622 (1964)ADSCrossRefGoogle Scholar
  34. 34.
    H. Bethe, Z. Phys. 71, 205 (1931)ADSCrossRefGoogle Scholar
  35. 35.
    N.P. Mehta, J.R. Shepard, Phys. Rev. A 72, 032728 (2005)ADSCrossRefGoogle Scholar
  36. 36.
    J.C. Collins, Renormalization (Cambridge University Press, Cambridge, 1984)Google Scholar
  37. 37.
    D. Lee, Prog. Part. Nucl. Phys. 63, 117 (2009)ADSCrossRefGoogle Scholar
  38. 38.
    M. Lüscher, Commun. Math. Phys. 105, 153 (1986)ADSCrossRefGoogle Scholar
  39. 39.
    V. Efimov, Phys. Lett. B 33, 563 (1970)ADSCrossRefGoogle Scholar
  40. 40.
    P.F. Bedaque, H.-W. Hammer, U. van Kolck, Nucl. Phys. A 646, 444 (1999)ADSCrossRefGoogle Scholar
  41. 41.
    E. Epelbaum, J. Gegelia, U.-G. Meißner, D.L. Yao, Eur. Phys. J. A 53, 98 (2017)ADSCrossRefGoogle Scholar
  42. 42.
    L. Platter, H.-W. Hammer, U.-G. Meißner, Few Body Syst. 35, 169 (2004)ADSGoogle Scholar
  43. 43.
    L. Platter, H.-W. Hammer, U.-G. Meißner, Phys. Rev. A 70, 052101 (2004)ADSCrossRefGoogle Scholar
  44. 44.
    E. Epelbaum, H.-W. Hammer, U.-G. Meißner, Rev. Mod. Phys. 81, 1773 (2009)ADSCrossRefGoogle Scholar
  45. 45.
    G.P. Lepage, L. Magnea, C. Nakhleh, U. Magnea, K. Hornbostel, Phys. Rev. D 46, 4052 (1992)ADSCrossRefGoogle Scholar
  46. 46.
    C.T.H. Davies, K. Hornbostel, G.P. Lepage, P. McCallum, J. Shigemitsu, J.H. Sloan, Phys. Rev. D 56, 2755 (1997)ADSCrossRefGoogle Scholar
  47. 47.
    TXL Collaboration (A. Spitz et al.), Phys. Rev. D 60, 074502 (1999)CrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Helmholtz-Institut für Strahlen- und Kernphysik and Bethe Center for Theoretical PhysicsUniversität BonnBonnGermany
  2. 2.National Superconducting Cyclotron LaboratoryMichigan State UniversityEast LansingUSA
  3. 3.Department of PhysicsNorth Carolina State UniversityRaleighUSA
  4. 4.Institute for Advanced Simulation, Institut für Kernphysik, and Jülich Center for Hadron PhysicsForschungszentrum JülichJülichGermany
  5. 5.JARA - High Performance ComputingForschungszentrum JülichJülichGermany
  6. 6.Tbilisi State UniversityTbilisiGeorgia

Personalised recommendations