Advertisement

The role of constituent quark exchange on the NLO structure function and the EMC ratios of the 4He nucleus

  • M. ModarresEmail author
  • A. Hadian
Regular Article - Theoretical Physics
  • 28 Downloads

Abstract.

As in our recent work for the 6Li nucleus, we intend to reformulate the valence quark exchange formalism (VQEF) for the \( {A}=4\) iso-scalar system and apply it to extract the u -d constituent quark distribution functions of the 4He nucleus. The constituent quark model (CQM) is used to evaluate the point-like parton distribution functions (PDF), the structure functions (SF), and the EMC ratio of this light nucleus, at the leading order (LO) and the next-to-leading-order (NLO) levels. Subsequently, the results are compared with our previous corresponding works and available experimental data. It is shown that the present framework provides the desirable results. It can be asserted that the common simplified VQEF, in which quark exchanges are considered between only two nucleons, plus the CQM, i.e. the constituents of the quark exchange model (CQEM), may be a reliable approximation to elicit the proper parton distributions of the light nuclei. However this argument should be tested at least for a few \( A\le 16\) nuclei. Finally, as we pointed out in our prior report for the 6Li nucleus, it can also be concluded that the LO approximation may be enough to calculate the EMC ratio of the bound nuclei.

References

  1. 1.
    M. Modarres, A. Hadian, Nucl. Phys. A 966, 342 (2017)ADSCrossRefGoogle Scholar
  2. 2.
    M. Betz, G. Krein, Th.A.J. Maris, Nucl. Phys. A 437, 509 (1985)ADSCrossRefGoogle Scholar
  3. 3.
    P. Hoodbhoy, R.L. Jaffe, Phys. Rev. D 35, 113 (1987)ADSCrossRefGoogle Scholar
  4. 4.
    P. Hoodbhoy, Nucl. Phys. A 465, 113 (1987)CrossRefGoogle Scholar
  5. 5.
    R.P. Feynman, Photon Hadron Interaction (Benjamin, New York, 1972)Google Scholar
  6. 6.
    F.E. Close, An Introduction to Quarks and Partons (Academic Press, London, 1989)Google Scholar
  7. 7.
    R.G. Roberts, The Structure of the Proton (Cambridge University Press, New York, 1993)Google Scholar
  8. 8.
    S. Malace, D. Gaskell, D.W. Higinbotham, I.C. Cloet, Int. J. Mod. Phys. E 23, 1430013 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    M. Arneodo et al., Nucl. Phys. B 441, 12 (1995)ADSCrossRefGoogle Scholar
  10. 10.
    E.D. Bloom et al., Phys. Rev. Lett. 23, 930 (1969)ADSCrossRefGoogle Scholar
  11. 11.
    M. Breidenbach et al., Phys. Rev. Lett. 23, 935 (1969)ADSCrossRefGoogle Scholar
  12. 12.
    R.E. Taylor, Rev. Mod. Phys. 63, 573 (1991)ADSCrossRefGoogle Scholar
  13. 13.
    M.M. Sargsian et al., J. Phys. G 29, R1 (2003)CrossRefGoogle Scholar
  14. 14.
    G. Piller, W. Wesie, Phys. Rep. 330, 1 (2000)ADSCrossRefGoogle Scholar
  15. 15.
    L.L. Frankfurt, M.I. Strikman, Phys. Rep. 76, 215 (1981)ADSCrossRefGoogle Scholar
  16. 16.
    B. Lamp, E. Reya, Phys. Rep. 332, 1 (2000)ADSCrossRefGoogle Scholar
  17. 17.
    J.J. Aubert et al., Phys. Lett. B 105, 403 (1983)Google Scholar
  18. 18.
    D.W. Duke, J.F. Owns, Phys. Rev. D 30, 49 (1984)ADSCrossRefGoogle Scholar
  19. 19.
    M. Modarres, J. Phys. G: Nucl. Part. Phys. 20, 1423 (1994)ADSCrossRefGoogle Scholar
  20. 20.
    M. Modarres, K. Ghafoori-Tabrizi, J. Phys. G: Nucl. Phys. 14, 1479 (1988)ADSCrossRefGoogle Scholar
  21. 21.
    L. Frankfurt, M. Strikman, Int. J. Mod. Phys. E 21, 1230002 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    L.B. Weinstein et al., Phys. Rev. Lett. 106, 052301 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    W. Melnitchouk, AIP Conf. Proc. 1261, 85 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    I.R. Afnan et al., Phys. Rev. C 68, 035201 (2003)ADSCrossRefGoogle Scholar
  25. 25.
    G.G. Petratos, in Proceeding of International Workshop on the Nucleon Structure Function in High x-Bjorken Region, Temple University, Philadelphia, PA, USA (Temple University Press, 2000)Google Scholar
  26. 26.
    F. Bissey, A.W. Thomas, I.R. Afnan, Phys. Rev. C 64, 024004 (2001)ADSCrossRefGoogle Scholar
  27. 27.
    L. Frankfurt, V. Guzey, M. Strikman, Phys. Rep. 512, 255 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    M.M. Yazdanpanah, M. Modarres, Phys. Rev. C 57, 525 (1998)ADSCrossRefGoogle Scholar
  29. 29.
    M. Modarres, F. Zolfagharpour, Nucl. Phys. A 765, 112 (2006)ADSCrossRefGoogle Scholar
  30. 30.
    M. Modarres, M. Rasti, M.M. Yazdanpanah, Few-Body Syst. 55, 85 (2014)ADSCrossRefGoogle Scholar
  31. 31.
    M. Modarres, M. Rasti, Int. J. Mod. Phys. E 22, 1350037 (2013)ADSCrossRefGoogle Scholar
  32. 32.
    M. Modarres, A. Hadian, Int. J. Mod. Phys. E 24, 1550037 (2015)ADSCrossRefGoogle Scholar
  33. 33.
    C.R. Chen, G.L. Payne, J.L. Friar, B.F. Gibson, Phys. Rev. C 3, 1740 (1986)ADSCrossRefGoogle Scholar
  34. 34.
    A. Stadler, W. Glockle, P.U. Sauer, Phys. Rev. C 44, 2319 (1991)ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    G. Altarelli, N. Cabibbo, L. Maiani, R. Petronzio, Nucl. Phys. B 69, 531 (1974)ADSCrossRefGoogle Scholar
  36. 36.
    A. Manohar, H. Georgi, Nucl. Phys. B 234, 189 (1984)ADSCrossRefGoogle Scholar
  37. 37.
    S. Scopetta, V. Vento, M. Traini, Phys. Lett. B 421, 64 (1998)ADSCrossRefGoogle Scholar
  38. 38.
    A. De Rujula, F. Martin, Phys. Rev. D 22, 1767 (1980)ADSGoogle Scholar
  39. 39.
    L. Frankfurt, M. Strikman, Phys. Lett. B 18, 254 (1987)ADSCrossRefGoogle Scholar
  40. 40.
    C. Ciofi degli Atti, S. Liuti, Phys. Rev. C 41, 1100 (1990)ADSCrossRefGoogle Scholar
  41. 41.
    P. Gonzalez et al., Z. Phys. A 350, 371 (1995)ADSCrossRefGoogle Scholar
  42. 42.
    M. Gluck, E. Reya, A. Vogt, Z. Phys. C 67, 433 (1995)ADSCrossRefGoogle Scholar
  43. 43.
    M. Modarres, M.M. Yazdanpanah, F. Zolfagharpour, Eur. Phys. J. A 32, 327 (2007)ADSCrossRefGoogle Scholar
  44. 44.
    J. Seely, A. Daniel, D. Gaskell, J. Arrington et al., Phys. Rev. Lett. 103, 202301 (2009)ADSCrossRefGoogle Scholar
  45. 45.
    New Muon Collaboration (P. Amaudruz et al.), Nucl. Phys. B 441, 3 (1995)ADSCrossRefGoogle Scholar
  46. 46.
    J. Gomez, R. Arnold, P.E. Bosted, C. Chang et al., Phys. Rev. D 49, 4348 (1994)ADSCrossRefGoogle Scholar
  47. 47.
    E. Ebrahimi, M. Modarres, M.M. Yazdanpanah, Few-Body Syst. 39, 177 (2006)ADSCrossRefGoogle Scholar
  48. 48.
    M.M. Yazdanpanah, M. Modarres, Few-Body Syst. 37, 33 (2005)ADSCrossRefGoogle Scholar
  49. 49.
    M.M. Yazdanpanah, M. Modarres, Eur. Phys. J. A 6, 91 (1999)ADSCrossRefGoogle Scholar
  50. 50.
    M.M. Yazdanpanah, M. Modarres, Eur. Phys. J. A 7, 573 (2000)ADSGoogle Scholar
  51. 51.
    M.A. Kimber, A.D. Martin, M.G. Ryskina, Phys. Rev. D 63, 114027 (2001)ADSCrossRefGoogle Scholar
  52. 52.
    A.D. Martin, M.G. Ryskin, G. Watt, Eur. Phys. J. C 66, 163 (2010)ADSCrossRefGoogle Scholar
  53. 53.
    E.G. de Oliveira, A.D. Martin, F.S. Navarra, M.G. Ryskin, JHEP 09, 158 (2013)ADSCrossRefGoogle Scholar
  54. 54.
    H. Hosseinkhani, M. Modarres, Phys. Lett. B 694, 355 (2011)ADSCrossRefGoogle Scholar
  55. 55.
    H. Hosseinkhani, M. Modarres, Phys. Lett. B 708, 75 (2012)ADSCrossRefGoogle Scholar
  56. 56.
    M. Modarres, H. Hosseinkhani, N. Olanj, Phys. Rev. D 89, 034015 (2014)ADSCrossRefGoogle Scholar
  57. 57.
    M. Modarres, M.R. Masouminia, H. Hosseinkhani, N. Olanj, Nucl. Phys. A 945, 168 (2016)ADSCrossRefGoogle Scholar
  58. 58.
    M. Modarres, H. Hosseinkhani, N. Olanj, M.R. Masouminia, Eur. Phys. J. C 75, 556 (2015)ADSCrossRefGoogle Scholar
  59. 59.
    M. Botje, Comput. Phys. Commun. 182, 490 (2011) arXiv:1005.1481ADSCrossRefGoogle Scholar
  60. 60.
    M. Modarres, A. Hadian, Phys. Rev. D 98, 076001 (2018)ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Physics DepartmentUniversity of TehranTehranIran

Personalised recommendations